摘要
Fourier形态分析中引入旋转对称性概念和算符T(α),本文得到对称度C(α),如同形态描述符L2(n),C(α)是一个旋转不变量和标度不变量,而且有明确的物理意义。因此,对一种粉末的若干个颗粒的C(α)值可以统计加和,加和后得到的C(α)曲线,亦即对称谱,可反映出该种粉末的总体形状特征。
Introducing the conception of rotational symmetry and arithmetic operator T(α) into Fourier morphological analysis method,we obtain C(α),the symmetry at rotating angle α.Just like the morphological descriptor L 2(n),the symmetry C(α) is a invariant for rotation and scale,and has definite physis significance.So the symmetry C(α) of several particles for a powder can be calculated by statistical addition.The symmetry C(α) curve obtained by addition,i.e.symmetry chart,can reflect a general shape feature of this powder.
出处
《粉末冶金工业》
CAS
1999年第1期15-18,共4页
Powder Metallurgy Industry
关键词
形态分析
形态描述符
旋转对称
对称谱
粉末
Morphological analysis morphological desciptor rotational symmetry Symmetry chart