期刊文献+

利用格子Boltzmann方法数值模拟Rayleigh-Benard对流 被引量:9

Numerical Simulation of Rayleigh-Benard Convection Using Lattice Boltzmann Method
下载PDF
导出
摘要 采用格子Boltzmann方法对较大Rayleigh数范围下的二维Rayleigh-Benard对流进行了模拟研究。引入能量分布函数,利用该能量分布函数与粒子速度分布函数耦合来求解一个热流场,能量分布函数与粒子速度分布函数和Boltzmann方程构成了一个新的双分布格子Boltzmann模型。在考虑密度随温度变化的情况下,进行数值模拟,得到了Rayleigh-Benard对流速度、温度随时间的变化规律、系统的流线和等温线分布及平均Nusselt数与Rayleigh数的之间的关系,与相关文献数据进行了对比,模拟结果非常吻合,证明了改进的双分布格子Bo-ltzmann模型的有效性。 In this paper,the lattice Boltzmann method is developed for the simulation of Rayleigh-Benard Convection in a large scope of Rayleigh Number.Energy distribution function is introduced to solve thermal flow field coupled with particle velocity distribution function,energy distribution function,particle velocity distribution function and Boltzmann equations compose a new double distribution lattice Boltzmann model.The new model is used for the simulation of Rayleigh-Benard convection by considering the fluid density variation with the temperature,the velocity,temperature variation with time,streamline,temperature distribution and average Nusselt number are established.The numerical results are found to be in agreement with the previous analytical solutions and experiments,showing the effectiveness of the improvement model.
出处 《力学季刊》 CSCD 北大核心 2010年第2期172-178,共7页 Chinese Quarterly of Mechanics
关键词 Rayleigh-Benard自然对流 格子BOLTZMANN方法 双分布格子Boltzmann模型 平衡分布函数 Rayleigh-Benard convection lattice boltzmann method double distribution function lattice boltzmann equation equilibrium distribution function
  • 相关文献

参考文献2

二级参考文献15

  • 1Hou Shuling, Zou Qisu, Chen Shiyi, et al. Simulation of driven cavity by the lattice Boltzmann method. J Comput Phys, 1995, 118:329-347.
  • 2McNamara G, Alder B. Analysis of the lattice Boltzmann treatment of hydrodynamics. Physica A, 1993, 194:218.
  • 3Alexander F J, Chen S, Sterling JD. Lattice Boltzmann thermohydrodynamics. Phys Rev E, 1993, 47:R2249.
  • 4Pavlo P, Vahala G, Vahala L, et al. Linear-stability anal- ysis of thermo-lattice Boltzmann models. J Comput Phys, 1998, 139:79.
  • 5Bartoloni A, Battista C, Cabasino S, et al. LBE simulation of Rayleigh-Benard convection on the APE100 parallel processor. Int J Mod Phys C, 1993, 4:993.
  • 6Shan X. Simulation of Rayleigh-Benard convection using a lattice Boltzmann method. Phys Rev E, 1997, 55:2780.
  • 7Eggels JGM, Somers JA. Numerical simulation of free convective flow using the lattice-Boltzmann scheme. Int J Heat and Fluid Flow, 1995, 16:357-364.
  • 8Peng Y, Shu C, Chew YT. Simplified thermal lattice Boltzmann model for incompressible thermal flows. Phys Rev E, 2003, 68:026701.
  • 9Niu XD, Shu C, Chew YT. A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows. Computers & Fluids, 2007, 36:273-281.
  • 10Somers JA. Direct simulation of fluid flow with cellular au- tomata and the lattice-Boltzmann equation. Appl Sci Res, 1993, 51:127-133.

共引文献161

同被引文献48

  • 1郗恒东,孙超,夏克青.湍流热对流中的动力学和传热研究[J].物理,2006,35(4):265-268. 被引量:11
  • 2郭吉林,周国发,周勇飞,闫丽.聚合物异型材挤出胀大全三维等温黏弹性的数值模拟[J].南昌大学学报(工科版),2007,29(1):4-8. 被引量:4
  • 3AHLERS G, GROSSMANN S,LOHSE D. Heat tran-sfer and large scale dynamics in turbulent Rayleigh-B^nard convection[J]. Reviews of Modem Physics,2009,81(2): 503.
  • 4ZHOU Q, STEVENS R J A M,SUGIYAMA K,et al.Prandtl-Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh-B^nard conve-ction[J]. Journal of Fluid Mechanics, 2010, 664: 297-312.
  • 5SHISHKINA O, THESS A. Mean temperature profilesin turbulent Rayleigh-Benard convection of water[J].Journal of Fluid Mechanics, 2009, 633: 449-460.
  • 6AMATI G,KOAL K,MASSAIOLI F, et al. Turbulentthermal convection at high Rayleigh numbers for aBoussinesq fluid of constant Prandtl number[J]. Physicsof Fluids, 2005,17(12): 121701.
  • 7胡军,尹协远.双流体Poiseuille-Rayleigh-Bénard流动中脉冲扰动的时空演化[J].中国科学技术大学学报,2007,37(10):1267-1272. 被引量:18
  • 8孙亮,孙一峰,马东军,孙德军.高瑞利数下水平自然热对流的幂律关系[J].物理学报,2007,56(11):6503-6507. 被引量:4
  • 9CROCHET M J,KEUNINGS R.Die swell of a maxwell fluid:numerical prediction[J].Journal of Non-Newtonian Fluid Mechanics,1980,7(2):199-212.
  • 10LUO X L,TANNER RI.A streamline element scheme for solving viscoelastic flow problems[J].Part II.Integral constitutive models[J].Journal of Non-Newtonian Fluid Mechanics,1986,22(1):61-89.

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部