期刊文献+

单向偏心粘弹性梁弯扭耦合振动复模态分析 被引量:3

Complex Modal Analysis of Bending-torsional Coupled Vibration of Viscoelastic Beam with Single Cross-sectional Symmetry
下载PDF
导出
摘要 对单向偏心等截面粘弹性梁,考虑偏心引起的弯扭耦合作用。将运动方程写成状态方程形式,利用复模态正交性将其解耦成为若干个广义复振子的求解和叠加问题;使用跟踪结构边界条件矩阵行列式零点的方法求得复频率和复模态,进而可以求得粘弹性偏心梁在任意初始条件和外部激励下的动力响应。通过算例,从结构复频率、复模态幅值和幅角、在不同频率简谐集中力作用下结构动力响应等方面综合分析了粘弹性阻尼和弯扭耦合的影响。计算结果表明,在粘弹性阻尼作用下,衰减系数随振型阶数而增大,振动频率随之不断减小;单纯弯曲和扭转振动的固有频率分布影响各阶复模态中弯扭耦合作用的强弱。通过与有限元法计算结果比较,验证了本文方法的合理性。 The bending-torsional coupled vibration of viscoelastic beam with uniform cross section due to the offset between the mass center and shear center was dealt.The motion equations of the beam were rewritten in the form of state equations and then transformed into the combination of a set of complex oscillators based on the complex modal superposition method.The complex frequencies and modes were obtained by tracing zero points of the determinant of the structural boundary condition matrix;and then,the dynamic responses of the beam under arbitrary initial conditions and external excitations were obtained.Through the numerical examples,the effects of visco-elastic damping and bending-torsional coupling were analyzed by means of a comprehensive study of the complex frequencies,amplitude and phase angle of complex modes,and the structural dynamic responses to concentrated harmonic excitations with different frequencies.The results show that,due to the effect of visco-elastic damping,the attenuation coefficient increases with the increasing of modal order,while the vibrational frequencies decrease with it;the effects of bending-torsional coupling were determined by the distribution of natural frequencies of pure bending and pure torsional vibrations.The proposed method is validated by the comparison with finite element method.
出处 《力学季刊》 CSCD 北大核心 2010年第2期265-271,共7页 Chinese Quarterly of Mechanics
关键词 粘弹性梁 弯扭耦合振动 复模态法 viscoelastic beams bending-torsional coupled vibrations complex mode method
  • 相关文献

参考文献9

  • 1铁摩辛柯 杨·D·H 小韦孚·W.工程中的振动问题[M].北京:人民铁道出版社,1978..
  • 2Banerjee J R,Su H.Free transverse and lateral vibration of beams with torsional coupling[J].Journal of Aerospace Engineering,2006,19(1):13-20.
  • 3Bishop R E D,Cannon S M,Miao.On coupled bending and torsional vibration of uniform beams[J].Journal of Sound and Vibration,1989,131(3):457-464.
  • 4Tanaka M,Beacin A N.Free vibration solution for uniform beams of nonsymmetrical cross section using Mathematica[J].Computer and Structures,1999,71(1):1-8.
  • 5李俊,沈荣瀛,华宏星.非对称Bernoulli-Euler薄壁梁的弯扭耦合振动[J].工程力学,2004,21(4):91-96. 被引量:8
  • 6Jones D I.Handbook of viscoelastic vibration damping[M].New York,2001.
  • 7刘芳,陈立群.黏弹性梁弯曲振动的复模态分析[J].机械强度,2005,27(5):586-589. 被引量:6
  • 8胡海昌.多自由度线性阻尼系统的振动问题.固体力学学报,1980,(1).
  • 9杨晓东,陈立群.粘弹性轴向运动梁的非线性动力学行为[J].力学季刊,2005,26(1):157-162. 被引量:12

二级参考文献20

  • 1[1]Wekezer J W. Free vibrations of thin-walled bars with open cross sections [J]. Journal of Engineering Mechanics, 1987, 113:1441-1451.
  • 2[2]Dokumaci E. An exact solution for coupled bending and torsional vibrations of uniform beams having single cross-sectional symmetry [J]. Journal of Sound and Vibration, 1987, 119:443-449.
  • 3[3]Bishop R E D, S M Cannon and S Miao. On coupled bending and torsional vibration of uniform beams [J]. Journal of Sound and Vibration, 1989, 131:457-464.
  • 4[4]Klausbruckner M J and R J Pryputniewicz. Theoretical and experimental study of coupled vibrations of channel beams [J]. Journal of Sound and Vibration, 1995, 183:239-252.
  • 5[5]Dvorkin E N, D Celentano, A Cuitino and G Gioia. A Vlasov beam element [J]. Computers and Structures, 1989,33:187-196.
  • 6[6]Friberg P O. Beam element matrices derived from Vlasov's theory of open thin-walled elastic beams [J]. International Journal of Numerical Methods in Engineering, 1985, 21:1205-1228.
  • 7[7]Leung A Y T. Dynamic stiffness analysis of thin-walled structures [J]. Thin-walled Structures, 1992, 14:209-222.
  • 8[8]Burden R L and J D Faires. Numerical Analysis [M]. Boston: Pws-Kent Publishing Company, 1989.
  • 9[9]Timoshenko S P, D H Young and Jr W Weaver. Vibration Problems in Engineering [M]. New York: Wiley, 1974.
  • 10Oz H R, Pakdemirli M. Vibrations of an axially moving beam with time-dependent velocity [J]. J sound Vibration, 1999,227(2):239 -257.

共引文献37

同被引文献23

  • 1李俊,沈荣瀛,华宏星.非对称Bernoulli-Euler薄壁梁的弯扭耦合振动[J].工程力学,2004,21(4):91-96. 被引量:8
  • 2刘芳,陈立群.黏弹性梁弯曲振动的复模态分析[J].机械强度,2005,27(5):586-589. 被引量:6
  • 3Winkler E. Theory of elasticity and strength [ M ]. Czechoslovakia: Dominicus Prague, 1867.
  • 4Kenney J. Steady state vibrations of beam on elastic subgrade for moving loads [ J ]. ASME Journal of Applied Mechanics, 1954; 21(4) : 359 -364.
  • 5Pasternak P L. On a new method of analysis of an elastic foundation by means of two foundation constants (in Russian). Gosttd [ M ]. Izdat. Literaturi po Stroit. i Arhitekture, Moskow. 1954.
  • 6Wang T M, Stephens J E. Natural frequencies of Timoshenko beam on Pasternak foundations [ J ]. Journal of Sound and Vibration, 1977, 51 : 149 - 155.
  • 7Callm F F. Dynamic analysis of beams on viscoelastic foundation [ J ]. European Journal of Mechanics A/Solids, 2009, 28:469-476.
  • 8倪金福,张阿舟.关于复模态理论的几个问题[J].振动与冲击,1984,1:15-23.
  • 9Huang w, Zou Y. The dynamic response of a viscoelastic winkler foundation-supported elastic beam impacted by a low velocity [ J ]. Computers & Structures, 1994, 52 (3) : 431 - 436.
  • 10WINKLER E. Theory of elasticity and strength[ D ]. Czechoslovakia: Dominicus Prague, 1867.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部