期刊文献+

一种基于双栅材料的单极性类金属氧化物半导体碳纳米管场效应管设计方法 被引量:3

Dual-gate-material-based device design for unipolar metal oxide semiconductor-like carbon nanotube field effect transistors
原文传递
导出
摘要 由于导电沟道-源/漏电极界面处可能发生的载流子带间隧穿,传统类金属氧化物半导体(MOS)碳纳米管场效应管呈现双极性传输特性,极大影响了器件性能的提高及其在电路中的应用.为获得具有理想单极性传输特性的类MOS碳纳米管场效应管,本文提出了一种基于双栅材料的器件设计方法.模拟结果表明,通过合理选取调节电极材料,在不影响器件亚阈值斜率的同时,该设计方法不仅能使开关电流比增大6—9个数量级,有效调节阈值范围,而且能有效消除传统类MOS碳纳米管场效应管的双极性传输特性.进一步研究表明,该设计所获得的器件性能提高与调节电极材料的选取密切相关,同时量子电容对其亚阈值斜率、传输极性也有一定影响. Due to carrier band-to-band tunneling(BTBT) through channel-source /drain contacts,traditional MOS(metal oxide semiconductor)-like carbon nanotube field effect transistors(CNFETs) suffer from quasi-ambipolar transport property,leaving much negative impacts on device performance and its application in circuits.To suppress such quasi-ambipolar behavior,a novel device design based on dual-gate-material device structure is proposed.The modeling results show that,with proper choice of tuning gate material,this device design can increase the ON-OFF current ratio by 6—9 orders of magnitude,tune the threshold region effectively and keep the sub-threshold slope immune from it.In addition,the quasi-ambipolar transport characteristic of C-CNFETs can be suppressed effectively using such novel device design.Further study reveals that the performance of the proposed design depends highly on the choice of tuning gate material,and the quantum capacitance in CNFETs has great effect on not only its subthreshold slope but also its transport polarity.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第7期5010-5017,共8页 Acta Physica Sinica
基金 国家高技术研究发展计划(批准号:2009AA01Z114 2009AA01Z124)资助的课题~~
关键词 双栅材料 碳纳米管场效应管 带间隧穿 双极性传输 dual gate material carbon nanotube-field effect transistors band to band tunneling ambipolar transport
  • 相关文献

参考文献38

  • 1Martel R,Wong H S,Chan K,Avouris P.2001 IEDM Tech. Digest Washington,p159.
  • 2张兆祥,侯士敏,赵兴钰,张浩,孙建平,刘惟敏,薛增泉,施祖进,顾镇南.单壁碳纳米管的场发射特性研究[J].物理学报,2002,51(2):434-438. 被引量:27
  • 3ITRS.2008.http://public.itrs.net.
  • 4唐娜斯 颜晓红 丁建文.物理学报,2004,54:333-333.
  • 5Javey A,Guo J,Wang Q,Lundstron M,Dai H.2003.Lett. Nature 424 654.
  • 6Heinze S,Tersoff J,Martel R,Derycke V,Appenzeller J,Avouris P.2002.Phys. Rev. Lett. 89 106801.
  • 7Chen J,Klinke C,Afzali A,Chan K,Avouris P.2004,IEDM Tech. Digest San Francisco p695.
  • 8Chen J,Klinke C,Afzali A,Avouris P.2005.Appl. Phys. Lett. 86 123108.
  • 9Lin Y M,Appenzeller J,Knoch J,Avouris P.2005.IEEE Trans. Nano. 4 481.
  • 10Pourfath M,Ungersboeck E,Gehring A,Kosina H.2005.J. Computational Electronics 4 75.

二级参考文献15

  • 1Iijima S 1991 Nature 354 56
  • 2Iijima S and Ichihashi T 1993 Nature 363 603
  • 3Saito R,Dresselhaus G & Saito M S R 1998 Physical properties of carbon nanotubes (London:Imperial College Press)
  • 4Saito Y,Hamaguchi K,Hata K,Uchida K,Tasaka Y,Ikazaki F,Yumura M,Kasuya A,Nishina Y 1997 Nature, 389 554
  • 5Saito Y,Hamaguchi K,Nishino T,Hata K,Tohji K,Kasuya A,Nishina Y 1997 Jpn.J.Appl.Phys. 36 L1340
  • 6Saito Y,Hamaguchi K,Hata K,Tohji K,Kasuya A,Nishina Y,Uchida K,Tasaka Y,1998 Ultramicroscopy, 73 1
  • 7Dean K A and Chalamala B R 1999 J.Appl.Phys. 85 3832
  • 8Dean K A,von Allmen P and Chalamala B R 1999 J.Vac.Sci.Technol. B17(5) 1959
  • 9Fransen M J,van Rooy Th L,Krait P 1999 Appl.Surf.Sci. 146 312
  • 10Ding Y,Hang Q L,Zhang H Z,Feng S Q,Bai Z G,Yu D P,Zhang Z X,Xue Z Q,Shi Z J,Lian Y F,Gu Z N 1999 Chinese Physics Letters 16 (2) 117

共引文献26

同被引文献11

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部