期刊文献+

遥感图像的显著-概要特征提取与目标检测 被引量:9

Extraction of saliency-gist features and target detection for remote sensing images
下载PDF
导出
摘要 针对巨幅遥感图像的目标检测问题,提出了一种基于显著-概要特征的遥感图像自动目标检测算法.采用滑动窗口将巨幅遥感图像划分为若干个小尺度的区域,针对各个小尺度分块图像,借鉴人类视觉生理功能特性之原理,提取其显著特征和概要特征,其中的显著特征代表了图像中的显著信息及显著区域空间分布和关联信息,概要特征可从整体上反映该区域的背景/目标关联信息.通过对分块区域图像的分类鉴别以实现目标检测.实验结果表明:此方法能以高可靠性和高精确度检测出巨幅遥感图像中的目标. An automatic approach to detect and classify targets in high-resolution broad-area remote sensing images is explored,which relies on detecting statistical signatures of targets,in terms of a set of biologically-inspired low-level visual features.The broad-area remote sensing images were first cut into small image chips with slide window,which were analyzed in two complementary ways: attention/saliency analysis exploits local features and their interactions across space,while gist analysis focuses on global non-spatial features and their statistics.Both saliency and gist feature sets were used to classify each chip as containing target or not,through using a support vector machine.The proposed algorithm outperformed the state-of-the-art HMAX algorithm in the experiments and thus can be used to reliably and effectively detect highly variable target objects in large scale remote sensing image datasets.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第6期659-662,共4页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(60875072) 国家高技术研究发展(863)计划重点资助项目(2008AA12A200)
关键词 目标检测 显著特征 概要特征 遥感图像 target detection saliency feature gist feature remote sensing image
  • 相关文献

参考文献12

  • 1Amit Y. 2D object detection and recognition, models, algorithms and nctworks[M]. Cambridge : MIT Press,2002.
  • 2Viola P, Jones M. Robust real-time face detection [J]. International Journal of Computer Vision ,2004,57 ( 2 ) : 137 - 154.
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints[ J ]. International Journal of Computer Vision, 2004,60 (2) :91 -110.
  • 4Bouchard G, Triggs B. Hierarchical part-based visual object categorization [ C ]//Cordelia Scbmid. Proceedings of CVPR, IEEE Computer Society. Los Alamitos : IEEE Computer Society,2005 : 710 -715.
  • 5Grauman K, Darrell T. The pyramid match kernel: efficient learning with sets of features [ J ]. Journal of Machine Learning Research ,2007,8 (4) :725 - 760.
  • 6Mutch J,Lowe D. Object class recognition and localization using sparse features with limited receplive fields [J]. International Journal of Computer Vision, 2008,80 ( 1 ) :45 - 57.
  • 7Elazary L,Itti L. Interesting objects are visually salient[J].Journal of Vision ,2008,8 ( 3 ) : 1 - 15.
  • 8Itti L, Koch C, Niebur E. A model of sallency-based visual attention for rapid scene analysis[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998,20 ( 11 ) : 1254 - 1259.
  • 9Oliva A,Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope [ J ]. International Journal of Computer Vision, 2001,42 ( 3 ) : 145-175.
  • 10Ferris M,Munson T. Interior-point methods for massive support vector machine [ J ]. SlAM Journal on Optimization, 2002,13 (3) :783 -804.

同被引文献136

  • 1叶聪颖,李翠华.基于HSI的视觉注意力模型及其在船只检测中的应用[J].厦门大学学报(自然科学版),2005,44(4):484-488. 被引量:24
  • 2王璐,蔡自兴.未知环境中基于视觉显著性的自然路标检测[J].模式识别与人工智能,2006,19(1):100-105. 被引量:8
  • 3张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 4Mutch J, Lowe D G. Object class recognition and localization using sparse features with limited receptive fields[ J]. International Journal of Computer Vision,2008,80( 1 ) :45 -57.
  • 5Yantis S. Stimulus-driven attentional capture and attentional control settings [ J ]. Journal of Experimental Psychology : Human Perception and Performance, 1993,19 ( 3 ) :676-681.
  • 6Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 ( 11 ) : 1254-1259.
  • 7Pollmann S, Manginelli A A. Repeated contextual search cues lead to reduced bold-onset times in early visual and left inferior frontal cortex[J]. Open Neuroimag J,2010(4) :9-15.
  • 8Oliva A,Torralba A, Castelhano M S, et al. Top-down control of visual attention in object detection E C ] //SuviSofi Oy Ltd. Proceedings of the IEEE International Conference on Image Processing. Barcelona, Spain: IEEE Signal Processing Society, 2003: 253-256.
  • 9Durrie D, Mcminn P S. Computer-based primary visual cortex training for treatment of low myopia and early presbyopia [ J ]. Trans Am Ophthalmol Soe,2007,105:132 -140.
  • 10Li Jia. Photography image database E EB/OL 1University Park: The Pennsylvania State University,2001 [2010-06-17 ]. http :// www. stat. psu. edu/-jiali/index, download, html.

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部