期刊文献+

涡轮叶片吸力面气膜冷却效率的数值研究 被引量:12

Numerical investigation on film cooling effectiveness at suction surface of stator blade
原文传递
导出
摘要 针对某型导向叶片,运用RNG(renormalization group)湍流模型对涡轮叶栅通道内部的三维流场和叶片吸力面的冷却效率进行了数值模拟.分析在叶栅通道主流入口雷诺数Re=4×105~6×105和冷气吹风比M=0.5~3范围内,沿吸力面不同弦向位置处开设气膜孔对气膜冷却效率的影响.结果表明:各位置气膜孔单独喷射时叶片吸力面的冷却效率均随着入口雷诺数的增加而增大;在气膜孔出口下游附近,冷却效率随着吹风比的增加先升高后降低,在下游远处则一直随着吹风比的增加而增大;三个位置处气膜孔单独喷射时,位置1气膜孔的冷却效率较位置2和位置3的高. The film cooling characteristics of blade surface were numerically investigated using the two-equation turbulence model of the renormalization group.Three-dimensional turbulent flow in turbine cascade and the cooling effectiveness on blade surface were studied under different Reynolds numbers and blowing ratios.The influence of the cooling effectiveness of cylindrical film cooling holes on the blade suction surface with varying location was investigated.Results show that the cooling effectiveness for each film cooling hole increases with the increment of the mainstream Reynolds numbers.The cooling effectiveness downstream the exit of holes changes obviously with the increment of blowing ratio,and away from the downstream the effectiveness keeps increasing with the increment of blowing ratio.Under the same condition the cooling effectiveness of location 1 was higher than other two locations.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2010年第6期1245-1250,共6页 Journal of Aerospace Power
关键词 气膜冷却 吸力面 涡轮叶片 数值计算 冷却效率 film cooling suction surface turbine blade numerical computation cooling effectiveness
  • 相关文献

参考文献10

  • 1Ito S, Ooldstein R J, Eckert E R G. Film cooling of a gas turbine blade[J].ASME Journal of Engineering for Power, 1978,100:476-481.
  • 2Ammari H D, Hay N, Lampard D. Effect of acceleration on the heat transfer coefficient on a film cooled surface[J]. ASME Journal of Turbomachinery, 1991,113. 442-449.
  • 3Drost U,Bolcs A, Hoffs A. Utilization of the transient liquid crystal technique for film cooling effectiveness and heat transfer investigations on a flat plate and a turbine airfoil [R].ASME 97-GT-26,1997.
  • 4Berhe M K, Patankar S V. Curvature effects on discrete hole film cooling[J]. ASME Journal of Turbomachinery, 1999,121:781-791.
  • 5Berhe M K, Patankar S V. Investigation of discret-hole filmcooling parameter using curved plate model[J]. ASME Journal of Turbomachinery, 1999,121 : 792-803.
  • 6Day C R B, Oldfield M L G, Lock G D. The influence of film cooling on the efficiency of an annular nozzle guide vane cascade[J]. ASME Journal of Turbomacbinery, 1999, 121:145 -151.
  • 7Sargison J E,Guo S M,Oldfield M L G,et al. A converging slot-hole film cooling geometry: Part 2 -- Transonic nozzle guide vane heat transfer and loss[J]. ASME Journal of Turbomachinery,2002,124(3) :461- 471.
  • 8GAO Zhihong, Narzary D P, HAN Jechin. Film cooling on a gas turbine blade pressure side or suction side with axial shaped holes[J]. International Journal of Heat and Mass Transfer, 2008,51:2139-2152.
  • 9韩振兴,末永洁,刘石.吹风比对气膜冷却效率影响的实验研究[J].航空学报,2004,25(6):551-555. 被引量:8
  • 10陶文铨.数值传热学[M].西安:西安交通大学出版社,1992.

二级参考文献6

  • 1Ito S, Goldstein R J, Eckert E R G. Film cooling of a gas turbine blade[J]. ASME J of Engineering for Power, 1978,100:476-481.
  • 2Schwarz S G, Goldstein R J, Eckert E R G. The in-fluence of curvature on film cooling performance[J]. ASME J of Turbomachinery,1991,113: 472-478.
  • 3Goldstein R J, Stone L D. Row-of-holes film cooling of curved walls at low injection angles[J]. ASME J of Turbomachinery,1997,119:574-579.
  • 4Berhe M K, Pantankar S V. Curvature effects on discrete hole film cooling paramenters using curved-plate models[J]. ASME Journal of Turbomachinery,1999, 121:781-791.
  • 5Lin Y L, Shih T L P. Computations of discrete hole film cooling over flat and convex surfaces[R]. ASME Paper,No.98-GT-436,1998.
  • 6Berhe M K, Pantankar S V. Investigation of discrete-hole film cooling parameters using curved plate models[J]. ASME Journal of Turbomachinery, 1999,121:792-803.

共引文献25

同被引文献62

引证文献12

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部