期刊文献+

量子遗传算法在网络误用检测中的应用 被引量:2

Quantum genetic algorithm in network misuse intrusion detection
下载PDF
导出
摘要 针对基于网络误用入侵检测模型的入侵特征库存在构建困难、自适应差的缺点,提出了一种基于量子遗传算法的入侵特征库优化算法。首先通过提取网络协议中容易被攻击和修改的特征值,经组合和编码后构成算法的初始种群。然后以检测率和误警率为评价指标设计适应度函数,利用量子旋转门更新染色体,随着算法的运行逐代优化种群。实验仿真结果表明:该算法在寻优能力与收敛速度上均优于对应的遗传算法;经该算法优化后的种群,检测能力强、自适应性好。 Aimed at the shortcomings that there are difficulties of constructing and bad self adaptability in the intrusion signature sets based on the network misuse intrusion detection model,the method of optimizing intrusion signature sets with quantum genetic algorithm is proposed.Firstly,the features which are easily attacked and modified are extracted from network protocol,and the initial population is produced by combining and coding.Then,the fitness function based on the evaluation indexes of the detection rate and false-alarm-rate is designed,the chromosomes are updated with the quantum rotation gate,and the population is optimized generation by generation as the algorithm runs.Simulation results show that the QGA is superior to the corresponding GA in search ability and convergence rate,and the population optimized by QGA had better detection ability and self adaptability.
作者 张宗飞
出处 《计算机工程与设计》 CSCD 北大核心 2010年第12期2933-2935,F0003,共4页 Computer Engineering and Design
基金 浙江省教育厅科研基金项目(Y200909706)
关键词 入侵检测 量子遗传算法 入侵特征 检测率 误警率 intrusion detection quantum genetic algorithm intrusion signature detection rate false-alarm-rate
  • 相关文献

参考文献5

  • 1申红婷.遗传算法在网络入侵检测中的应用[C].中国电子学会第十五届信息论学术年会暨第一届全国网络编码学术年会论文集(上册).北京:国防工业出版社,2008:598-601.
  • 2王艳萍,王文莉.基于遗传算法的网络入侵检测[J].微计算机信息,2009,25(15):53-54. 被引量:6
  • 3郭慧玲,唐勇,张冬丽.遗传算法在入侵检测规则提取中的应用[J].哈尔滨工业大学学报,2009,41(1):248-250. 被引量:9
  • 4Wang Ling,Tang Fang,Wu Hao.Hybrid genetic algorithm based on quantum computing for numerical optim ization and parameter estimation[J].Applied Mathematics and Computation,2005,171(2):1141-1156.
  • 5Lincoln Labs.KDD-cup data set[EB/OL].http://kdd.ics.uci.edu/databases/kddcup99.html.2004-12-02.

二级参考文献11

  • 1金舒,刘凤玉.基于动态防火墙SecuRouter的网络安全框架[J].微计算机信息,2006,22(04X):66-69. 被引量:5
  • 2CHITTUR A. Model generation for an intrusion detection System using genetic algorithms [J/OL]. http://wwwl, cs. col-umbia, edu/ids/publications/gaids-thesis01, pdf, 2005.
  • 3LI Wei. Using Genetic Algorithm for network intrusion detection [ C ]// Proceedings of United States Department of Energy Cyber Security Group 2004 Training Conference. Kansas : [ s. n. ] ,2004:24 - 27.
  • 4PILLAI M M, ELOFF J H P, VENTER H S. An approach to implement a network intrusion detection system using genetic algorithms [ C ]//Proceedings of SAICSIT 2004. [ S. L. ] : South Africa: South African Institute for Computer Scientists and Information Technologists, 2004:221 -228.
  • 5GOMEZ J, DASGUPTA D. Evolving fuzzy classifiers for intrusion detection [ C ]//Proceedings of the 2002 IEEE Workshop on Information Assurance. NY: West Point, 2002 : 68 - 75.
  • 6MIDDLEMISS M, DICK G. Feature selection of intrusion detection data using a hybrid genetic algorithm/ KNN approach [ C]//Design and application of hybrid intelligent systems. The Netherlands:IOS Press Amsterdam, 2003:519-527.
  • 7LU Wei, TRAORE I. Detecting new forms of network intrusion using genetic programming [ J]. Computational Intelligence, 2004, 20 : 475 - 494.
  • 8KDD99. KDD99 cup dataset[ DB/OL]. http://kdd. ics. uci. edu/databases/kddcup99, 1999.
  • 9罗安坤,李甦.基于粗粒度模型遗传算法在网络入侵检测系统中的应用研究[J].云南大学学报(自然科学版),2006,28(S2):51-55. 被引量:2
  • 10肖道举,毛辉,陈晓苏.BP神经网络在入侵检测中的应用[J].华中科技大学学报(自然科学版),2003,31(5):6-8. 被引量:23

共引文献13

同被引文献20

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部