期刊文献+

弧形调强放射治疗对剂量计算方法的要求 被引量:1

Request of Dose Calculation Method in Arc-modulated Radiation Therapy
原文传递
导出
摘要 在弧形调强放射治疗的治疗计划设计中,由于包含有很多照射方向,调强最优化的射束元矩阵计算需要很大的计算量和存储量,为提高计算效率常使用简化剂量计算模型计算射束元矩阵,因此有必要研究简化模型对治疗计划质量产生影响。对一个模拟例子和一个临床实例,使用没考虑散射效应的原射线剂量计算模型计算射束元矩阵,由此进行最优化计算。在得到最优化强度分布后,通过比较原射线剂量计算模型和微分卷积剂量计算模型得到的剂量分布,研究了不同射束数目条件下,使用简化剂量计算模型计算射束元剂量矩阵对最终的剂量分布质量的影响。结果表明,在射线束很多的情况下(对应弧形调强照射),用简化的剂量计算模型,即不考虑散射来计算射束元剂量矩阵,会导致靶区剂量分布的质量大大低于预期的剂量分布质量,因此,弧形调强放射治疗的最优化计算中,有效考虑散射的影响是必要的。 In the treatment planning for arc-intensity-modulated radiation therapy, because many irradiation directions are involved, the computing time and storage space needed for calculating beamlet dose matrices in optimization is quite heavy. In order to improve the computation efficiency, the simplified dose calculation is often used for the calculation of the dose matrices. Thus, it is deserved to study how this simplification could influence the quality of the treatment plan. In this paper, a simulation and a clinical case are adopted. Using the primary dose calculation model without taking into account the scattering effect to generate the dose matrices of beamlets, the optimization for beam intensity profile are firstly carried out. Then, based on the obtained intensity profile, the dose distributions are recalculated by using the primary dose calculation model and the differential convolution superposition dose calculation model which is more accurate but more time consuming. By comparing dose distributions obtained by this two models, the influence of using simplified model for dose matrix calculation on beam profile optimization is studied. The results demonstrate that when the beam number is large(corresponding to the arc-modulated radiation), using the simplified model for the calculation of dose matrix of beamlets will reduce the quality of dose distribution greatly comparing with the expected dose distribution quality. Thus it is very necessary to correctly take into account the scattering effect in beam profile optimization for the arc-intensity-modulated radiation therapy.
出处 《原子核物理评论》 CAS CSCD 北大核心 2010年第2期218-222,共5页 Nuclear Physics Review
基金 国家自然科学基金资助项目(10475059)~~
关键词 调强放射治疗 最优化 剂量计算模型 intensity modulated radiation therapy optimization dose calculation model
  • 相关文献

参考文献16

  • 1Steve Webb. Intensity modulated radiation therapy. Sutton Surrey(UK): Institute of Physics Publishing. 2001, 298- 330.
  • 2Intensity ModulatedRadiation Therapy Collaborative Working Group. Int J Radiation Oncology Biol Phys, 2001, 51 (4): 880.
  • 3Webster G J, Rowbottom C G, Mackay R I. Med Phys, 2006, 33(6): 2065.
  • 4OttoK. MedPhys, 2007, 35(1): 310.
  • 5Steve Webb, Mcquaid D. Med Phys, 2009, 54(14): 4345.
  • 6RamseyC. MedPhys, 2007, 34(6): 2604.
  • 7Ramsey C. Med Phys, 2007, 34(6): 2614.
  • 8Mackic T R, Scrimger J W, Battista J J. Med Phys, 1985, 12(2) : 188.
  • 9Mackic T R, Bielajew A F, Rogers D W O, et al. Med Phys, 1988, 33(1): 1.
  • 10Boyer A, Mok E. Med Phys, 1985, 12(2): 169.

二级参考文献9

  • 1Webb S. Intensity modulated radiation therapy. Institute of Physics Publishing, Bristol. 2001:298-330
  • 2Intensity modulated radiation therapy collaborative working group, Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiation Oneology Biol Phys, 2001 ; 51 (4) : 880
  • 3Maekic TR, Serimger JW, Battlsta JJ. A convolution method of calculating dose for 15MV X rays. Med Phys, 1985 ; 12 (2) : 188
  • 4Mackic TR, Bielajew AF, Rogers DWO, et al. Generation of photonenergy deposition kernels using the EGS Monte Carlo code. Med Phys, 1988;33(1 ) : 1
  • 5Boyer A, Mok E. Photon dose distribution model employing convolution calculations. Med Phys, 1985; 12(2) : 169
  • 6Mohan R, Chui C. Different pencil beam dose computation model for photons. Med Phys, 1986;13(1):64
  • 7Hou Q, Wang J, Chen Y, et al. An optimization algorithm for intensity modulated radiotherapy-The simulated dynamics with dosevolume constraints. Med Phys, 2003;30(1) :61
  • 8Spirou SV, Chui C. A gradient inverse planning algorithm with dose-volume constraints. Med Phys, 1998;25(3):321
  • 9Hou Q, Zhang CH, Wu ZW. A method to improve spatial resolution and smoothness of intensity profiles in IMRT treatment planning. Med Phys, 2004;31(6) : 1339

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部