期刊文献+

有限环上的齐次重量与Mbius函数 被引量:2

Homogeneous Weights and Mbius Functions on Finite Rings
下载PDF
导出
摘要 讨论了有限环上齐次重量、M(o|¨)bius函数和欧拉phi-函数等函数之间的关系.在有限主理想环上给出了这些函数的易于计算的刻画,对于整数剩余类环把它们还原成了经典的数论M(o|¨)bius函数和数论欧拉phi-函数. The relations among the homogeneous weights,the Mobius functions and Euler phi-functions on finite rings are discussed.Some computational formulas for these functions on finite principal ideal rings are characterized.For the residue rings of integers,they are reduced to the classical number-theoretical Mobius functions and the classical number-theoretical Euler phi-functions.
作者 樊恽 刘宏伟
出处 《数学年刊(A辑)》 CSCD 北大核心 2010年第3期355-364,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10871079) 教育部科学技术研究重点项目(No.108099) 教育部留学回国人员科研启动资金(No.20091590)资助的项目
关键词 有限环 有限主理想环 齐次重量 M(o|)bius函数 欧拉phi-函数 Finite ring Finite principal ideal ring Homogeneous weight Mobius function Euler phi-function
  • 相关文献

参考文献11

  • 1Constantinescu I,Heise W.A metric for codes over residue class rings of integers[J].Problemy Peredachi Infromatsii,1997,33(3):22-28.
  • 2Greferath M,Schmidt S E.Finite-ring combinatorics and Macwilliams' equivalence theorem[J].J Combin Theory,Set A,2000,92:17-28.
  • 3Honold T.Characterization of finite Frobenius rings[J].Arch Math (Basel),2001,76(6):406-415.
  • 4Voloch J F,Walker J L.Homogeneous weights and exponential sums[J].Finite Fields Appl,2003,9(3):310-321.
  • 5Byrne E,Greferath M,Honold T.Ring geometries,two-weight codes,and strongly regular graphs[J].Des Codes,Crypt,2008,48:1-16.
  • 6Greferath M,O'Sullivan M E.On bounds for codes over Frobenius rings under homogeneous weights[J].Discrete Mathematics,2004,289"11-24.
  • 7Greferath M,McGuire G,O'Sullivan M E.On plotkin-optimal codes over finite Frobenius rings[J].Journal of Algebra and Its Applications,2006,5:799-815.
  • 8Greferath M,Schmidt S E.Gray isometries for finite chain rings and a nonlinear ternary (36,312,15) code[J].IEEE Trans Inform Theory,1999,45:2522-2524.
  • 9Jacobson N.Basic algebra I[M].2nd ed.San Francisco:W H Freeman and Company,1985.
  • 10Wood J.Duality for modules over finite rings and applications to coding theory[J].Amer J Math,1999,121(3):555-575.

同被引文献27

  • 1王文省.pq阶环[J].曲阜师范大学学报(自然科学版),1994,20(4):39-41. 被引量:4
  • 2张明善.关于有限零因子环[J].西南师范大学学报(自然科学版),1989,14(1):25-29. 被引量:3
  • 3林莉,易忠,邓培民.有限交换环上的线性元胞自动机[J].广西师范大学学报(自然科学版),2005,23(3):25-28. 被引量:3
  • 4Constantinescu I,Heise W.A Metric for Codes over Residue Class Rings of Integers[J].Probl Peredachi Inform,1997,33(3):22-28.
  • 5Greferath M,Schmidt S E.Finite-ring combinatorics and Macwilliams'equivalence theorem[J].J Combin Theory Set A,2000(92):17-28.
  • 6Kai Xiaoshan,Zhu Shixin.On the distances of cyclic codes of length 2e over Z4[J].Discrete Mathematics,2010,310:12-20.
  • 7Abualrub T,Oehmke R.On the generators of Z4cyclic codes of length 2e[J].IEEE Trans.Inform.Theory,2003,49(9):2126-2133.
  • 8Blackford T.Cyclic codes over Z4of oddly even length[J].Discrete Applied Mathematics,2003,128:27-46.
  • 9Dinh H Q.Complete distances of all negacyclic codes of length 2s over Za2[J].IEEE Trans.Inform.Theory,2007,53(1):147-161.
  • 10唐高华,苏华东,赵寿祥.Z_n[i]的零因子图性质[J].广西师范大学学报(自然科学版),2007,25(3):32-35. 被引量:14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部