期刊文献+

低雷诺数下跨声速转子流动失稳及周向槽处理机匣扩稳 被引量:2

Investigation on flow instability of transonic compressor rotor and the effects of CGCT on stall margin at low Reynolds number
下载PDF
导出
摘要 采用数值方法模拟了低雷诺数条件下NASA Rotor 37跨声速压气机转子内部流场。结果表明,附面层径向涡是该压气机转子流动失稳的一个很重要的原因。根据该压气机转子低雷诺数条件下流动失稳的特点,研究了周向槽处理机匣结构对其性能的影响。结果表明,引入处理机匣后,附面层径向涡得到一定程度的抑制,由附面层径向涡所引发的叶顶阻塞区有所减小,提高了压气机转子的失速裕度。 The flow instability of NASA Rotor 37 transonic compressor rotor at low Reynolds number was investigated by numerical simulation.The results show that the boundary layer radial vortex becomes an important factor for triggering off the compressor flow instability.The effects of the transonic compressor rotor with circumferential groove casing treatment were investigated.The results show that the boundary layer radial vortex is controlled to some extent and the blockage zone due to boundary layer separation is reduced,and the stall margin of the compressor rotor is increased.
出处 《推进技术》 EI CAS CSCD 北大核心 2010年第3期340-344,共5页 Journal of Propulsion Technology
基金 APTD研究项目(APTD-1504-04-07)
关键词 压气机 流动失稳 低雷诺数 机匣处理 附面层径向涡 叶顶间隙流 Compressor Flow instability Low Reynolds number Casing treatment Boundary layer radial vortex Tip leakage flow
  • 相关文献

参考文献10

  • 1Hoeger M, Fritsch G, Bauer D. Numerical simulation of the shock-tip leakage vortex interaction in a HPC front stage [ J ]. ASME Journal of Turbonmchinery, 1999, 121 : 456 - 468.
  • 2Furukawa M, Saiki K, Yamada K, et al. Unsteady flow behavior due to breakdown of tip leakage vortex in an axial compressor rotor at near-stall condition [ R ]. ASME 2000-GT-666.
  • 3Yamada K, Furukawa M, Nakano T, et al. Unsteady three-dimensional flow phenomena due to breakdown of tip leakage vortex in a transonic axial compressor rotor [ R ]. ASME 2004-GT-53745.
  • 4Hah C, Shunji Enomoto, Hobson G V. Numerical and experimental investigation of low reynolds number effects on laminar flow separation and transition in a cascade of compressor blade[ R]. ASME 2000-GT-276.
  • 5Heinz Adolf Schreiber, Wolfgang Steinert. Effects of Reynolds number and free-stream turbulence on boundary layer transition in a compressor cascade[ R] ASME 2000- GT.-0263.
  • 6Schreiber H A, Steinert W. Advanced high turning com- pressor airfoils for low reynolds number condition. Part2. Experimental and numerical analysis [ R ]. ASME 2003- GT-38417.
  • 7Behnken R L. Characterizing the effects of air injection on compressor performance for use in active control of rota- ting stall[ R]. ASME 97-GT-316.
  • 8Yang H, Nuernberger D, Nicke E A. Numerical investi- gation of casing treatment mechanisms with a conservation mixed-cell approach[ R]. ASME 2003-GT-28483.
  • 9楚武利,张皓光,吴艳辉,党春宁.槽式处理机匣开槽数目对扩稳效果的影响[J].推进技术,2008,29(5):598-603. 被引量:22
  • 10赵英武.雷诺数对压气机性能影响的数值模拟[D].西安:空军工程大学,2008.

二级参考文献9

  • 1楚武利,卢新根,吴艳辉.带周向槽机匣处理的压气机内部流动数值模拟与试验[J].航空动力学报,2006,21(1):100-105. 被引量:34
  • 2陈海昕,黄旭东,符松.跨声速压气机机匣处理的数值研究[J].航空动力学报,2007,22(2):298-304. 被引量:9
  • 3刘志伟 张长生 黄建功.关于周向槽机匣处理的若干观测.西北工业大学学报,1985,13(1).
  • 4Aamir Shabbir, John J Adamczyk. Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressors [ R ]. ASME 2004-GT- 53903.
  • 5Rabe D C, Hah C. Application of casing circumferential grooves for improved stall margin in a transonic axial compressor[ R ]. ASME 2002-GT-30641.
  • 6Prince D C J, Wisler D C, Hilvers D E. A study of casing treatment stall margin improvement phenomena [ R ]. ASME 75-GT-60.
  • 7Fujita H, Takata H. A study on configurations of casing treatment for axial flow compressor [ J ]. Bulletin of the JSME, 1984, 27(230) :1675 - 1681.
  • 8Wilke I, Kau H P. A numerical investigation of the influence of casing treatments on the tip leakage flow in a H PC front stage[ R]. ASME 2002-GT-30642.
  • 9Huu Duc Vo,Choon S Tan. Criteria for spike initiated rotating stall[ R ]. ASME 2005-GT-68374.

共引文献24

同被引文献19

  • 1屠秋野,陈玉春,苏三买,商旭升.雷诺数对高空长航时无人机发动机调节计划和性能影响[J].推进技术,2005,26(2):125-128. 被引量:11
  • 2赵峰,桂幸民.低雷诺数效应对某可控扩散叶型性能的影响[J].航空动力学报,2006,21(2):285-289. 被引量:10
  • 3郭琦,李兆庆.无人机和巡航导弹用涡扇/涡喷发动机的设计特点[J].燃气涡轮试验与研究,2007,20(2):58-62. 被引量:9
  • 4Rouser K P, King P 1, Schauer F R. Parametric Study ofUnsteady Turbine Performance Driven by a Pulse Detona- tion Combustor[ R]. AIAA 2010-6536.
  • 5Epstein A H. Millimeter-Scale, MEMS Gas Turbine En- gines [ R ]. Proceedings of ASME Turbo Expo, 2003-GT- 38866.
  • 6Epstein A H. Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines[ J]. Journal of Engineering for Gas Turbines and Power, 2004, 126:205-226.
  • 7Bradbrool S J. Common Solutions to Commercial and Mil- itary Propulsion Requirements [ C ]. Yokohama: 24th In- ternational Congress of the Aeronautical Sciennces, 2004.
  • 8Ehrlich H, Kurz K H, Rued K P, et al. Trends in Mili- tary Aeroengine-Design from EJ200 to Future Manned and Unmanned Vehicle Propulsion[ R ]. AIAA 2003-2612.
  • 9Johnson M W, Moore J. Secondary Flow Mixing Losses in A Centrifugal Impeller[ J]. ASME Journal of Engineering Power, 1983, 105(1):24-32.
  • 10Hirsch C, Kang S, Pointer G. A Numerically SupportedInvestigation on the 3D Flow in Centrifugal Impellers. Part I : The Validation Base[R]. ASME 96-GT-151.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部