摘要
C-oriented ZnO epitaxial thin films are grown separately on the a-plane and c-plane sapphire substrates by using a molecular-beam epitaxy technique. In contrast to single crystalline ZnO films grown on a-plane sapphire, the films grown on c-plane sapphire are found to be bi-crystalline; some domains have a 30~ rotation to reduce the large mismatch between the film and the substrate. The presence of these rotation domains in the bi-crystalline ZnO thin film causes much more carrier scatterings at the boundaries, leading to much lower mobility and smaller mean free path of the mobile carriers than those of the single crystalline one. In addition, the complex impedance spectra are also studied to identify relaxation mechanisms due to the domains and/or domain boundaries in both the single crystalline and bi-crystalline ZnO thin films.
C-oriented ZnO epitaxial thin films are grown separately on the a-plane and c-plane sapphire substrates by using a molecular-beam epitaxy technique. In contrast to single crystalline ZnO films grown on a-plane sapphire, the films grown on c-plane sapphire are found to be bi-crystalline; some domains have a 30~ rotation to reduce the large mismatch between the film and the substrate. The presence of these rotation domains in the bi-crystalline ZnO thin film causes much more carrier scatterings at the boundaries, leading to much lower mobility and smaller mean free path of the mobile carriers than those of the single crystalline one. In addition, the complex impedance spectra are also studied to identify relaxation mechanisms due to the domains and/or domain boundaries in both the single crystalline and bi-crystalline ZnO thin films.
基金
partially supported by the National Natural Science Foundation of China (Grant No. 10804017)
the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2007118)
the Research Fund for the Doctoral Program of Higher Educa-tion of China (Grant No. 20070286037)
the Cyanine-Project Foundation of Jiangsu Province of China (Grant No. 1107020060)
the Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu Province of China (Grant No. 1107020070)
the New Century Excellent Talents in University (Grant No. NCET-05-0452)