期刊文献+

Thermal transport property of Ge_(34) and d-Ge investigated by molecular dynamics and the Slack's equation

Thermal transport property of Ge_(34) and d-Ge investigated by molecular dynamics and the Slack's equation
下载PDF
导出
摘要 In this study, we evaluate the values of lattice thermal conductivity κL of type Ⅱ Ge clathrate (Ge34) and diamond phase Ge crystal (d-Ce) with the equilibrium molecular dynamics (EMD) method and the Slack's equation. The key parameters of the Slack's equation are derived from the thermodynamic properties obtained from the lattice dynamics (LD) calculations. The empirical Tersoff's potential is used in both EMD and LD simulations. The thermal conductivities of d-Ge calculated by both methods are in accordance with the experimental values. The predictions of the Slack's equation are consistent with the EMD results above 250 K for both Ge34 and d-Ge. In a temperature range of 200-1000 K, the κL value of d-Ge is about several times larger than that of Ge34. In this study, we evaluate the values of lattice thermal conductivity κL of type Ⅱ Ge clathrate (Ge34) and diamond phase Ge crystal (d-Ce) with the equilibrium molecular dynamics (EMD) method and the Slack's equation. The key parameters of the Slack's equation are derived from the thermodynamic properties obtained from the lattice dynamics (LD) calculations. The empirical Tersoff's potential is used in both EMD and LD simulations. The thermal conductivities of d-Ge calculated by both methods are in accordance with the experimental values. The predictions of the Slack's equation are consistent with the EMD results above 250 K for both Ge34 and d-Ge. In a temperature range of 200-1000 K, the κL value of d-Ge is about several times larger than that of Ge34.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期445-455,共11页 中国物理B(英文版)
基金 supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-H20)
关键词 CLATHRATE thermal conductivity molecular dynamics simulation the Slack's equation clathrate, thermal conductivity, molecular dynamics simulation, the Slack's equation
  • 相关文献

参考文献50

  • 1San-Miguel A, Keghelian P, Blase X, Melinon P, Perez A, Itie J P, Polian A, Reny E, Cros C and Pouchard M 1999 Phys. Rev. Lett. 83 5290.
  • 2Nolas G S, Cohn J L, Slack G A and Schujman S B 1998 Appl. Phys. Lett. 73 178.
  • 3Kuznetsov V L, Kuznetsova L A, Kaliazin A E and Rowe D M 2000 J. Appl. Phys. 87 7871.
  • 4Martin J, Nolas C S, Wang H and Yang J 2007 J. Appl. Phys. 102 103719.
  • 5Kawaji H, Horie H, Yamanaka S and Ishikawa M 1995 Phys. Rev. Lett. 74 1427.
  • 6Yamanaka S, Enishi E, Fukuoka H and Yasukawa M 2000 Inorg. Chem. 39 56.
  • 7Slack G A In: Rowe D M (editor) 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) p407.
  • 8Dong J, Sankey O F and Myles C W 2001 Phys. Rev. Lett. 86 2361.
  • 9Nolas G S, Beekman M, Gryko J, Lamberton Jr G A, Tritt T M and McMillan P F 2003 Appl. Phys. Lett. 82 910.
  • 10Li J, Porter L and Yip S 1998 J. Nuclear Mater. 255 139.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部