期刊文献+

Investigation on dependence of BiFeO_3 dielectric property on oxygen content

Investigation on dependence of BiFeO_3 dielectric property on oxygen content
下载PDF
导出
摘要 The influence of oxygen content on the dielectric property of BiFeO3 ceramics is studied by experiment and firstprinciples calculation. The experimental result demonstrates that the dielectric constant of BiFeO3 is strongly dependent on introduced oxygen and oxygen vacancies. By comparison with BiFeO3, the introduced oxygen and oxygen vacancies can lead to a reduction in dielectric constant of BiFeO5 at a lower frequency. The first-principles calculation also shows a similar result when photon energy is in a range of 2.0-4.1 eV. A likely explanation is that this oxygen content dependence may be ascribed to the distortion of Fe-O octahedron structure due to oxygen vacancies or excess oxygen ions in the crystal structure of BiFeO3. The influence of oxygen content on the dielectric property of BiFeO3 ceramics is studied by experiment and firstprinciples calculation. The experimental result demonstrates that the dielectric constant of BiFeO3 is strongly dependent on introduced oxygen and oxygen vacancies. By comparison with BiFeO3, the introduced oxygen and oxygen vacancies can lead to a reduction in dielectric constant of BiFeO5 at a lower frequency. The first-principles calculation also shows a similar result when photon energy is in a range of 2.0-4.1 eV. A likely explanation is that this oxygen content dependence may be ascribed to the distortion of Fe-O octahedron structure due to oxygen vacancies or excess oxygen ions in the crystal structure of BiFeO3.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期555-558,共4页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 60571063)
关键词 BIFEO3 dielectric property oxygen content BiFeO3, dielectric property, oxygen content
  • 相关文献

参考文献18

  • 1Kubel F and Schmid H 1990 Acta Crystallogr. 46 698.
  • 2Fischer P, Polomska M, Sosnowska I and Szymanski M 1980 J. Phys. C: Solid St. Phys. 13 1931.
  • 3Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719.
  • 4Baettig P, Ederer C and Spaldin N A 2005 Phys. Rev. B 72 214105.
  • 5Neaton J B, Deerer C, Waghmare U V, Spaldin N A and Rabe K M 2005 Phys. Rev. B 71 014113.
  • 6Ederer C and Spaldin N A 2005 Phys. Rev. B 71 060401.
  • 7Sun Y, Huang Z F, Fan H G, Ming X, Wang C Z and Chen G 2009 Acta Phys. Sin. 58 193.
  • 8Feng H J and Liu F M 2009 Chin. Phys. B 18 1574.
  • 9Li M L and MacManus-Driscoll L J L 2005 Appl. Phys. Lett. 87 252510.
  • 10Das R R, Kim D M, Baek S H, Eom C B, Zavaliche F, Yang S Y, Ramesh R, Chen Y B, Pan X Q, Ke X, Rzchowski M S and Streiffer S K 2006 Appl. Phys. Lett. 88 242904.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部