期刊文献+

A Mathematical Model with Delays for Schistosomiasis Japonicum Transmission 被引量:1

A Mathematical Model with Delays for Schistosomiasis Japonicum Transmission
原文传递
导出
摘要 A dynamic model of schistosoma japonicum transmission is presented that incorporates effects of the prepatent periods of the different stages of schistosoma into Barbour's model. The model consists of four delay differential equations. Stability of the disease free equilibrium and the existence of an endemic equilibrium for this model are stated in terms of a key threshold parameter. The study of dynamics for the model shows that the endemic equilibrium is globally stable in an open region if it exists and there is no delays, and for some nonzero delays the endemic equilibrium undergoes Hopf bifurcation and a periodic orbit emerges. Some numerical results are provided to support the theoretic results in this paper. These results suggest that prepatent periods in infection affect the prevalence of schistosomiasis, and it is an effective strategy on schistosomiasis control to lengthen in prepatent period on infected definitive hosts by drug treatment (or lengthen in prepatent period on infected intermediate snails by lower water temperature). A dynamic model of schistosoma japonicum transmission is presented that incorporates effects of the prepatent periods of the different stages of schistosoma into Baxbour's model. The model consists of four delay differential equations. Stability of the disease free equilibrium and the existence of an endemic equilibrium for this model are stated in terms of a key threshold parameter. The study of dynamics for the model shows that the endemic equilibrium is globally stable in an open region if it exists and there is no delays, and for some nonzero delays the endemic equilibrium undergoes Hopf bifurcation and a periodic orbit emerges. Some numerical results are provided to support the theoretic results in this paper. These results suggest that prepatent periods in infection affect the prevalence of schistosomiasis, and it is an effective strategy on schistosomiasis control to lengthen in prepatent period on infected definitive hosts by drug treatment (or lengthen in prepatent period on infected intermediate snails by lower water temperature).
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第4期433-446,共14页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.10831003,10925102) the Program of Shanghai Subject Chief Scientist(No.10XD1406200)
关键词 日本血吸虫病 数学模型 传播 地方病平衡点 动力学模型 时滞 延迟微分方程 Hopf分支 A mathematical model, Schistosoma japonicum transmission, Dynamics, Globally stable, Periodic orbits
  • 相关文献

参考文献16

  • 1Anderson,R.and May,R.,Helminth infections of humans:mathematical models,population dynamics,and control,Adv.Para.,24,1985,1-101.
  • 2Anderson,R.and May,R.,Infections Diseases of Humans:Dynamics and Control,Oxford University Press,Oxford,New York,1991.
  • 3Barbour,A.,Modeling the transmission of schistosomiasis:an introductory view,Amer.J.Trop.Med.Hyg.,55(Suppl.),1996,135-143.
  • 4Beretta,E.and Kuang,Y.,Geometric stability switch criteria in delay differential systems with delay dependent parameters,SIAM.J.Math.Anal.,33,2002,1144-1165.
  • 5Castillo-Chavez,C.,Feng,Z.and Xu,D.,A schistosomiasis model with mating structure and time delay,Math.Biosci.,211,2008,333-341.
  • 6Cooke,L.,Stability analysis for a vector disease model,Rocky Mount.J.Math.,7,1979,253-263.
  • 7Driessche,P.and Watmough,J.,Reproduction numbers and sub-thrsshold endemic equilibria for compartmental models of disease transmission,Math.Biosci.,180,2002,29-48.
  • 8Hairston,G.,An analysis of age-prevalence data by catalytic model,Bull.World Health Organ.,33,1965,163-175.
  • 9Hale,J.and Verduyn Lunel,S.M.,Introduction to Functional Differential Equations,Springer-Verlag,New York,1993.
  • 10Liang,S.,Maszle,D.and Spear,R.,A quantitative framework for a multi-group model of Schistosomiasis japonicum transmission dynamics and control in Sichuan,China,Acta Tropica,82,2002,263-277.

同被引文献12

  • 1马知恩,周义仓,主编.传染病动力学的数学建模与研究[M].北京:科学出版社,2003.
  • 2Yu Rong Yang. Echinococcosis in Ningxia Hui Autonomous Region, northwest China[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102(4): 319-328.
  • 3Philip S. Craig. Epidemiology of human alveolar echinococcosis in China[J]. Parasitology International, 2006, 55(1): 221-225.
  • 4Roberts M G, Lawson JR, Gemmell MA. Population dynamics of echinococcosis and cysticercosis: mathe- matical model of the life cycles of Taenia hydatigena and Taen'ia ovis[J]. Parasitology, 1987, 94(Pt 1):181-197.
  • 5Hirofumi Ishikawa. Mathematical modeling of Echinococcus multilocularis transmission[J]. Parasitology International, 2006, 55(1): 259-261.
  • 6Torgerson P R. The use of mathematical models to simulate control options for echinococcosis[J]. Acta Tropica, 2003, 85(2): 211-221.
  • 7Roberts M G, Aubert M F A. A model for the control of Echinococcus multilocularis in France[J]. Veterinary Parasitology, 1995, 56(1-3): 67-74.
  • 8Shigui Ruan, Don gmei Xiao, John C. Beier. On the Delayed Ross+Macdonald Model for Malaria Transmission[J]. Bulletin of Mathematical Biology, 2008, 70:1098 1114.
  • 9Anderson R, May T. Infectious Diseases of Human: Dynamics and Control[M]. Oxford: Oxford University Press, 1991.
  • 10多杰才让.棘球蚴(包虫)病流行与感染情况调查[J].中国畜牧兽医,2008,35(7):101-102. 被引量:5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部