期刊文献+

最优进化图像阈值分割算法 被引量:27

Optimal Evolution Algorithm for Image Thresholding
下载PDF
导出
摘要 针对图像阈值分割问题,根据遗传算法理论提出最优进化图像阈值分割算法.将图像中每个像素点看作一个染色体,阈值看作进化方向,假设最优进化方向存在,建立进化方向更新模型;然后定义了染色体编码规则,通过简单随机采样进行种群初始化,重新定义了适值函数和选择机制,在适当的交叉率和变异率下得到最优阈值;同时分析了假设和模型的合理性.实验结果表明,文中的假设和进化方向更新模型合理,该算法是稳定、有效的图像阈值分割算法. An optimal evolution algorithm for image thresholding is proposed based on theories of genetic algorithm. Pixel and threshold are regarded as chromosome and evolution direction, respectively. Assuming the optimal evolution direction exists, the updating model of evolution direction is established. Then by defining the chromosomes' coding rules, initializing the group by simple-random-sampling, and redefining the fitness function and the selection mechanism, the optimal threshold is obtained under the proper crossover rate and mutation rate. The rationalities of the assumption and the updating model have been analyzed in this paper. The experimental results show that the assumption and the updating model are proper; the proposed algorithm is robust and effective.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第7期1201-1206,共6页 Journal of Computer-Aided Design & Computer Graphics
关键词 图像阈值分割 图像分割 遗传算法 直方图 灰度级 image thresholding image segmentation genetic algorithm histogram grey-level
  • 相关文献

参考文献19

  • 1Zhang Y J. A survey on evaluation methods for image segmentation[J].Pattern Recognition, 1996, 29(8) : 1335- 1346.
  • 2Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging, 2004, 13(1): 146-165.
  • 3Tizhoosh H R. Image thresholding using type ii fuzzy sets[J].Pattern Recognition, 2005, 38(12): 2363-2372.
  • 4Davies E R. Stable bi level and multi-level thresholding of images using a new global transformation [J]. IET Computer Vision, 2008, 2(2): 60-74.
  • 5Dong L J, Yu G, Ogunbona P, et al. An efficient iterative algorithm for image thresholding [J]. Pattern Recognition Letters, 2008, 29(9): 1311-1316.
  • 6Tao W B, Jin H, Zhang Y M, etal. Image thresholding using graph cuts [J]. IEEE Transactions on Systems, Man and Cybernetics, 2008, 38(5): 1181-1195.
  • 7Wang S T, Chung F L, Xiong F S. A novel image thresholding method based on Parzen window estimate[J].Pattern Recognition, 2008, 41(1): 117 -129.
  • 8Malisia A R, Tizhoosh H R. Image thresholding using ant colony optimization [C]//Proceedings of the 3rd Canadian Conference on Computer and Robot Vision, Waterloo, 2006: 26-31.
  • 9Lei B, Fan J L. Parameter selection of generalized fuzzy entropy-based thresholding segmentation method with particle swarm optimization [C] //Proceedings of International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Harbin, 2008: 901-904.
  • 10Hammouche K, Diaf M, Siarry P. A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation [J]. Computer Vision and Image Understanding, 2008, 109(2):163-175.

二级参考文献3

共引文献76

同被引文献232

引证文献27

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部