期刊文献+

基于蒙特卡洛模拟分析不同基因集方法的效能

Effect Analysis on Different GSA Methods Based on Monte Carlo Simulation
原文传递
导出
摘要 目的:探索差异表达基因集(DEGs)筛选的有效方法。方法:基于蒙特卡洛模拟比较Efron's GSA、SAFE、Globaltest、PCOT2等四种基因集方法在分析微阵列数据时的统计推断能力。结果:Globaltest和PCOT2两种基于模型构建的基因集方法在处理模拟微阵列数据时效能相当,Globaltest略优于PCOT2,而Efron's GSA、SAFE方法检验效能低下。结论:Globaltest是一种较有效的微阵列数据分析方法。 Objective:To investigate effective methods of identifying different expression gene set(DEGs).Methods:The statistical inference capability of Efron's GSA,SAFE,Globaltest,PCOT2 methods,based on Monte Carlo simulation,were compared when used in microarray data analysis.Results:The efficiency of Globaltest and PCOT2 based on model building was almost the same in analyzing simulated microarry data,but Globaltest was slightly better than PCOT2.The detection rate of Efron's GSA and SAFE was lower.Conclusion:Globaltest is a more effective method to analysis microarray data.
出处 《现代生物医学进展》 CAS 2010年第10期1963-1967,共5页 Progress in Modern Biomedicine
基金 国家自然科学基金资助项目(39900126) 陕西省科技计划项目(2008K04-02)
关键词 基因集分析 微阵列数据 差异表达基因集 统计推断 gene set analysis microarray data DEGs statistical inference
  • 相关文献

参考文献15

  • 1Nam D, Kim SY. Gene-set approach for expression pattern analysis [J]. BriefBioinform, 2008, 9(3): 189-97.
  • 2Mootha VK, Lindgren CM, Eeiksson KF, et al. PGC-1 -responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes [J]. Nat Genet, 2003, 34 (3): 267-273.
  • 3Efton B, Tibshirani R. On testing the significance of sets of genes [J]. Ann Appl Statist, 2007, 1(1):107-129.
  • 4Song S, Black MA. Microarray-based gene set analysis: a comparison of current methods [J]. BMC Bioinformatics, 2008, 9:502(1)-(14).
  • 5Efron B, Tibshirani R. On testing the significance of sets of genes [J]. Ann Appl Statist, 2007, 1(1):107-129.
  • 6Barry WT, Nobel AB, Wright FA. Significance analysis of functional categories in gene expression studies: a structured permutation approach [J]. Bioinformatics, 2005, 21:1943-1949.
  • 7Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing [J]. J Roy Stat Soc, 1995,57(1):289-300.
  • 8Goeman JJ, van de Geer SA, de KF, et al. A global test for groups of genes: testing association with a clinical outcome [J]. Bioinformatics, 2004, 20:93-99.
  • 9Kong SW, Pu WT, Park PJ. A multivariate approach for integrating genome-wide expression data and biological knowledge [J]. Bioinformatics, 2006, 22(19):2373-2780.
  • 10Tian al, Greenberg SA, Kong SW, et al. Discovering statistically significant pathways in expression profiling studies [J]. Proc Nat Acad Sci, 2005, 102 (38):13544-13549.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部