期刊文献+

基于LSMM和改进的FCM提取城市植被覆盖度--以北京市海淀区为例 被引量:16

Extract urban vegetation coverage based on LSMM and improved FCM: a case study in Haidian District
下载PDF
导出
摘要 植被是城市生态系统的重要组成部分,及时获取植被覆盖信息对城市生态环境监测具有重要意义。利用中分辨率Landsat TM遥感数据,采用线性光谱分解模型(LSMM)开展城市植被覆盖度提取;同时,通过改进训练样本选择方式,在最小噪声变换(MNF)、像元纯净指数分析(PPI)、N维可视化分析基础上得到端元样本,再运用模糊C-均值(FCM)获取植被覆盖度;最后以高分辨率SPOT5遥感数据对两种方式的提取结果进行精度检验。结果显示,基于LSMM和改进的FCM提取的城市植被覆盖度与检验数据相关系数分别为0.8252和0.9381,后者可以较好地处理其他要素的非线性影响,因而具有较高精度。 Vegetation is an important part of urban ecosystem;therefore timely access to vegetation coverage information is of great significance for monitoring urban ecological environment.Linear spectral mixture model(LSMM) was carried out for urban vegetation coverage extraction using medium-resolution Landsat TM remote sensing data.Meanwhile,the fuzzy c-means(FCM) method was chosen to extract vegetation coverage by improving the training sample selection method to obtain the end-member sample based on minimum noise transform(MNF),pixel purity index analysis(PPI),and N-dimensional visualization analysis.Finally,high-resolution SPOT5 remote sensing data extracted in two ways were used to carry out the accuracy test for vegetation coverage.The results showed that the correlation coefficients between the inspection data and LSMM-based and improved FCM-based data were 0.8252 and 0.9381,respectively.It indicated that the improved FCM-based method with higher accuracy can better eliminate the nonlinear effect of other elements.
出处 《生态学报》 CAS CSCD 北大核心 2010年第4期1018-1024,共7页 Acta Ecologica Sinica
基金 遥感科学国家重点实验室开放基金资助项目 国家科技支撑计划资助项目(2007BAH15B02) 国家863计划资助项目(2009AA12Z-14611)
关键词 植被覆盖度 混合像元分解 线性光谱混合模型 改进的FCM vegetation coverage pixel unmixing linear spectral mixture model improved fuzzy c-means
  • 相关文献

参考文献3

二级参考文献40

  • 1[1]Adams J B,Smith M O,Johnson P E.Spectral Mixture Modeling:A New Analysis of Rock and Soil Types at the Viking Lander I Site[J].Journal of Geophysical Research,1986,91:8098-8812.
  • 2[2]Charles Ichoku,Arnon Karnieli.A Review of Mixture Modeling Techniques for Sub-Pixel Land Cover Estimation[J].Remote Sensing Reviews,1996,13:161-186.
  • 3[3]Phinn S,Stanford M,Scarth P,et al.Monitoring the Composition and form of Urban Environments Based on the Vegetation-Impervious Surface-Soil (VIS) Model by Sub-Pixel Analysis Techniques[J].International Journal of Remote Sensing,2002,23(20):4131-4153.
  • 4[4]Small C.Multitemporal Analysis of Urban Reflectance[J].Remote Sensing of Environment,2002,81:427-442.
  • 5[5]Kameyama S,Yamagata Y,Nakamura F,et al.Development of WTI and Turbidity Estimation Model Using SMA:Application to Kushiro Mire,Eastern Hokkaido,Japan[J].Remote Sensing of Environment,2001,77:1-9.
  • 6[6]Haboudane D,Bonn F,Royer A,et al.Land Degradation and Erosion Risk Mapping by Fusion of Spectrally-Based Information and Digital Geomorphometric Attributes[J].International Journal of Remote Sensing,2002,23:3795-3820.
  • 7[7]Metternicht G I,Fermont A.Estimating Erosion Surface Features by Linear Mixture Modeling[J].Remote Sensing of Environment,1998,64:254-265.
  • 8[8]Weng Q,Lu D,Schubring J.Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies[J].Remote Sensing of Environment,2004,89:467-483.
  • 9[9]Elmore A J,Mustard J F,Manning S J,et al.Quantifying Vegetation Change in Semiarid Environments:Precision and Accuracy of Spectral Mixture Analysis and the Normalized Difference Vegetation Index[J].Remote Sensing of Environment,2000,73:87-102.
  • 10[10]Rogan J,Franklin J,Roberts D A.A Comparison of Methods for Monitoring Multitemporal Vegetation Change Using Thematic Mapper Imagery[J].Remote Sensing of Environment,2002,80:143-156.

共引文献93

同被引文献304

引证文献16

二级引证文献282

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部