摘要
抗体分子对蛋白抗原的结合主要通过表位区域进行,而表位区域的氨基酸残基通常形成不连续的、构象的或者空间的表位区域,而不是抗原表面上的线性连续片段.已有许多算法可以用来预测构象表位,并且基于各自的测试集,各种工具对空间表位的预测都声称取得了杰出的效果.本文收集了由实验方法确定的空间表位数据并建立了一套独立的测试集.基于这套测试集,采用灵敏度、真阳性预测率、成功挑选率和接受者操作特性曲线下面积(AUC)等参数对常用蛋白抗原空间表位预测工具进行了评估,工具包括SEPPA,CEP,DiscoTope,ElliPro,PEPOP和BEpro等.测试集评估结果表明,6种蛋白抗原空间表位预测工具预测性能仍有待提高.其中,SEPPA预测性能相对较好,然而计算得到的灵敏度、真阳性预测率、成功挑选率和平均AUC值也并不理想.评估结果还表明,预测工具采用的空间表位训练和测试数据集以及预测算法对预测结果的准确性有较大影响.以上分析结果为改进B细胞蛋白抗原空间表位预测方法和为免疫原性多肽和新型疫苗分子的设计提供新的启示.
出处
《科学通报》
EI
CAS
CSCD
北大核心
2010年第18期1810-1815,共6页
Chinese Science Bulletin
基金
国家重点基础研究发展计划(2004CB720103
2006AA02312)
上海市教育发展基金会(2000236018
2000236016)
同济大学青年优秀人才培养行动计划(2008KJ073)
上海市自然科学基金(07ZR14085)资助项目