摘要
Based on the theory of moving surface boundary layer control(MSBC),a concept of an airfoil having a rotating cylinder at the leading edge has been developed and experimentally proven to have good aerodynamic performance even at large angles of attack.Thus,this research aims to give guidance on optimizing the design of this kind of airfoil with high lift coefficients.Using computational fluid dynamics(CFD)technique,the CFD simulation results have been compared with the experimental results available in the literature,and then the SST two-equation model is selected as the appropriate turbulence model.At a given cylinder surface velocity ratio,the cylinder diameter d,the drop height of trailing edgeδand the curvatures of the pressure and suction surfaces of the airfoil are regarded as the optimal design parameters and the airfoil lift coefficient is considered as the optimization objective function.Therefore,using orthogonal optimization method,we herein develop a new design of airfoil favorable for having a rotating leading edge.It has been numerically proven that the resulting airfoil has good capability of achieving a substantially superior performance when compared to the airfoils of the prior art.
基金
supported by National Natural Science Foundation of China(50836006)
Shanghai Science and Technology Committee with Grant No.09JC1405800
Program for Changjiang Scholars and Innovative Research Team in University with Grant No.IRT0844