期刊文献+

基于多重信号分类算法的复合材料冲击定位 被引量:14

Impact localization in composite using multiple signal classification method
原文传递
导出
摘要 为了提高复合材料结构冲击定位的精度和实时性,将阵列信号处理技术引入到结构健康监测领域,提出了利用小波变换和多重信号分类算法实现复合材料结构冲击定位的新方法:通过小波变换提取冲击响应信号某一窄带频率成分,运用多重信号分类(MUSIC)算法实现冲击源到达方向的估计;根据Lamb波传播特性,用小波变换求出某一中心频率下的对称模式和反对称模式的Lamb波到达同一传感器的时间差,结合对称模式和反对称模式Lamb的速度差就可以估计出冲击源到达传感器的距离,实现冲击定位。对玻璃纤维/环氧树脂复合材料层合板和碳纤维/双马树脂基复合材料层合板2种试件的实验均表明该方法能快速、精确地识别出冲击源位置。 In order to improve accuracy and real-time of impact localization in composite,the array signal processing technique was introduced into the area of structure health monitoring and a new method for impact monitoring in composite was proposed based on the wavelet transform and multiple signal classification(MUSIC)method.Firstly,narrowband frequency components of response signals were extracted by using wavelet transform,followed by the estimation of the direction-of-arrival(DOA) based on MUSIC method.Secondly,based on the propagation characteristics of lamb wave,the time-delay between symmetry and antisymmetry modal waves of one central frequency lamb wave arriving to the same array element was gained by using the wavelet transform,and the distance between impact source and array element was estimated according to velocity difference between symmetry and antisymmetry modal waves,thus the impact localization was realized.Experiments on the laminated glass fiber reinforced epoxy composite and laminated carbon fiber reinforced bismaleimide composite indicate that the present methodology can identify the impact location fast and accurately.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2010年第3期105-110,共6页 Acta Materiae Compositae Sinica
基金 国家自然科学基金重点项目(50830201) 国家高技术研究发展计划(863计划)(2007AA03Z117)
关键词 复合材料 冲击定位 阵列信号处理 多重信号分类 小波变换 composite impact localization array signal processing multiple signal classification wavelet transform
  • 相关文献

参考文献18

  • 1王强,袁慎芳.复合材料板脱层损伤的时间反转成像监测[J].复合材料学报,2009,26(3):99-104. 被引量:30
  • 2Ziola S M, Gorman M R. Source location in thin plates using cross-correlation [J]. J Acoust SocAm, 1991, 90(5): 2551- 2556.
  • 3Tadej Kosel, Igor Grabee. Location of acoustic emission sources generated by air flow[J]. Ultrasonics, 2000, 38: 824-826.
  • 4Nivesrangsan P, Steel J A, Reuben R L. Source location of acoustic emission in diesel engines[J]. Mechanical Systems and Signal Processing, 2007, 21: 1103-1114.
  • 5Frank Schafer, Rolf Janovsky. Impact sensor network for detecting of hypervelocity impacts on spacecraft [J]. Acta Astronautica, 2007, 61(10): 901-911.
  • 6Choi K, Chang F K. Identification of impact force and location using distributed sensors [J]. AIAA J, 1996, 34 (1): 136 -142.
  • 7Shin E S. Real- time recovery of impact force based on finite element analysis [J]. Comput Struct, 2000, 76: 621-635.
  • 8Liu G R, Ma W B, Han X. An inverse procedure for identification of loads on composite laminates [J]. Composites Part B, 2002, 33: 425-432.
  • 9Hu N, Fukunaga H, Matsumoto S, et al. An efficient approach for identifying impact force using embedded piezoelectric sensors [J]. International Journal of Impact Engineering, 2007, 34: 1258-1271.
  • 10Schmidt R O. Multiple emitter location and signal parameter estimation [ C] // Proc of RADC Spectrum Estimation Workshop. Griffiss AFB: [s. n. ], 1979:243-258.

二级参考文献21

共引文献116

同被引文献170

引证文献14

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部