摘要
测量上有许多极值问题,如各种准则下的平差,权的最优分配,网的优化方案等,多可归于线性极值问题,且多不适用寻常数学解法。但同型问题往往已经作过多次解算。因此本文以单纯形法为主,强调利用已有经验,直接逼近优解,或经少数次迭进达到优解,然后用极值条件加以验证。为此文中着重提出通用解式及优解条件,期能得出优解公式,有相当的适用范围。
There are many extreme problems in surveying, like the optimal distribution of weight, optimal design of networks, the method of least absolute sum etc. They all can be attributed to the linear extreme theory. While problems of the same model often have been repeatedly solved, therefore the present paper suggested instant, or through a few steps, approaches to the optimal solutions, based on the existing experiences, and using simplex method. The aim is to arrive at optimum formulae with an enough region of appliance. Along this line, this paper lays emphasis on the general form of solutions and the criterion to ascertain it.
出处
《测绘学报》
EI
CSCD
北大核心
1999年第1期11-14,共4页
Acta Geodaetica et Cartographica Sinica
基金
国家自然科学基金
中国科学院动力大地测量学开放研究实验室资助
关键词
线性极值理论
测量极值问题
经验解式
绝对
极小
Linear extreme theory, Extreme problems in surveying, Solution based on experience, Simplex method, LAS (Least absolute sum)