期刊文献+

蟑螂机器人仿生机理及运动控制 被引量:1

Bionic Mechanism and Locomotion Control for a Cockroach Robot
下载PDF
导出
摘要 对蟑螂机器人的仿生机理、基于行为控制系统、足模块设计、运动学和运动控制问题进行深入的分析。蟑螂的神经和肌肉运动系统是躯体运动及姿态实现的物质基础。通过工程模拟,研究在未知环境中蟑螂机器人如何通过行为控制方式来完成机器人的控制和步态生成。设计一种带有计算功能的足模块,最终目的是大量减少计算过程,以此保证蟑螂机器人非凡的灵活性。基于旋量理论和局部指数积公式,提出利用Paden-Kahan子问题法求解蟑螂机器人关节角位移的逆运动学方法,前向运动学的求解首先根据机体的自然约束来推导关节角之间的位置关系,然后用局部指数积公式推导机体位姿。运动控制采用分布式同步控制方式,并应用位置、速度和时间运动模式,保证了蟑螂机器人腿关节的轨迹跟踪精度与速度的平滑。仿真试验结果验证了上述仿生机制的有效性,并为进一步研究奠定了基础。 The bionic mechanism,behaviour based control system,leg module design,kinematics and locomotion control of a cockroach robot are analyzed in depth.The cockroach nervous-muscular system is the material foundation for the realization of body movement and orientation.Through engineering simulation,how the behaviour-based approach can be used for control and gait generation of a cockroach robot is investigated.A new leg module with calculation function is proposed in order to reduce the massive calculation process,thus ensuring the flexibility of the cockroach robot.Based on cockroach robot kinematics analysis,screw theory,and local product-of-exponentials formula,the inverse kinematics method is proposed,which uses Paden-Kahan sub-problems to directly obtain the displacement of joint angles.The forward kinematics derives the relationship between joint angles according to the natural restricts.Then the orientation of the robot is deduced by using local product-of-exponentials formula.The distributed synchronized control and position velocity and time movement pattern are used to ensure the trace tracking accuracy of the robot's leg joint,as well as the smoothness of velocity.The validity of the bionic mechanism is verified by simulation and experiment,which lays the foundation for further research.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第13期91-99,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金(60775059) 国家高技术研究发展计划(863计划 2008AA04Z210) 北京市自然科学基金(3093021)资助项目
关键词 仿生机理 基于行为控制系统 运动学 运动控制 Bionic mechanism Behaviour-based control system Kinematics Locomotion control
  • 相关文献

参考文献14

  • 1QUINN R D,NELSON G M,BACHMANN R J,et al.Parallel complementary strategies for implementing biological principles into mobile robots[J].The Int.Journal of Robotics Research,2003,22(3):169-186.
  • 2SCHROER R T,BOGGESS M J,BACHMANN R J,et al.Comparing cockroach and whegs robot body motions[C] //2004 IEEE International Conference on Robotics and Automation,April 26-May 1,2004,New Orleans,USA.USA:IEEE,2004:3 288-3 293.
  • 3WEINGARTEN J D,LOPES G A D,BUEHLER M,et al.Automated gait adaptation for legged robots[C] //2004 IEEE International Conference on Robotics and Automation,April 26-May 1,2004,New Orleans,USA.USA:IEEE,2004:2 153-2 158.
  • 4ALLEN T J,QUINN R D,BACHMANN R J,et al.Abstracted biological principles applied with reduced actuation improves mobility of legged robots[C] // 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,October 27-31,2003,Las Vegas,USA.USA:IEEE,2003:1370-1375.
  • 5SARANLI U,BUEHLER M.KODITSCHEK D E.Design,modeling and preliminary control of a compliant hexapod robot[C] // 2000 IEEE International Conference on Robotics and Automation,April 24-28,2000,San Francisco,CA,USA.USA:IEEE,2000:2 589-2 596.
  • 6CLARK J E,CHAM J G,BAILEY S A,et al.Biomimetic design and fabrication of a hexapedal running robot[C] //2001 IEEE International Conference on Robotics and Automation,May 21-26,2001,Seoul,Korea.USA:IEEE,2001:3 643-3 649.
  • 7ALTENDORFER R,MOORE N,KOMSUOLU H,et al.RHex:A biologically inspired hexapod runner[J].Autonomous Robots,2001,11(3):207-213.
  • 8BAI S P.Terrain-adaptive gait and path planning for walking machines[D].Nanyang:Nanyang Technological University,2000.
  • 9ZIELINSKA T.Control system of walking robot[C] // The Second International Workshop on Robot Motion Control,October 18-20,2001,Bukowy Dworek.USA:IEEE,2001:225-230.
  • 10SPENNEBERG D,KIRCHNER F,GEA J D.Ambulating robots for exploration in rough terrain on future extrateresstial missions[C] // The 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation,May 21-25,Nordwijk,The Netherlands.USA:IEEE,2004:254-261.

二级参考文献15

  • 1Murray R M, Li Z X, Sastry S S. A mathematical introduction to robotic manipulation, CRC Press, 1994.
  • 2Brockett R. Robotic manipulators and the product of exponential formula. In: Inter. Symp. in Math. Theory of Network and Systems, Beer Sheba, Israel. 1983:120~129.
  • 3Park F C. Computational aspect of manipulators via product of exponential formula for robot kinematics.IEEE Trans. on Automatic Control, 1994, 39(9): 643~647.
  • 4Chen I M, Yang G L. Inverse kinematics for modular reconfigurable robots. In: Proc. of IEEE Inter. Conf. on Robotics and Automation, 1998:1 647~1 652.
  • 5Podhorodeski R P, Pittens K H. A class of parallel manipulators based on kinematically simple branches. ASME Journal of Mechanical Design, 1994, 116:908~914.
  • 6Kim H S, Tsai L W. Evaluation of a cartesian parallel manipulator. In: Proc. of 8th Inter. Symposium on Advances in Robot Kinematics, 2002:21~28.
  • 7Portman V T, Sandler B Z, Zahavi E. Rigid 6x6 parallel platform for precision 3D micromanipulation: theory and design application. IEEE Trans. on Robotics and Automation, 2000,16(6): 629~643.
  • 8Innocenti C, Parenti-castelli V. Direct position analysis of the Stewart platform mechanism. Mechanism and Machine Theor., 1990, 25(6): 611~621.
  • 9Yang G L, Lim W K, Chen I M, et al. Design and kinematic analysis of modular reconfigurable parallel robots. In: IEEE Inter. Conf. Robotics and Automation. Detroit, USA, 1999:2 501~2 506.
  • 10Yang G L, Chen I M, Lin W, et al. Singularity analysis of three-legged parallel robots based on passive-joint velocities. IEEE Trans. on Robotics and Automation, 2001,17(4): 413~422.

共引文献2

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部