摘要
在公理系统中演绎定理是连接一致性和协调性的桥梁。对于带演绎定理的公理系统,可以证明公式集的一致性和协调性是等价的。在不带演绎定理的一阶公理系统中,一致性和协调性的差异集中体现在强完全性证明过程中。基于一致性的证明不依赖演绎定理,但基于协调性的强完全性证明多处受演绎定理束缚。文中将给出一个松绑方案,基于协调性上证明一阶公理系统QC1的强完全性。
In the axiom system,deduction theorem is the link connecting the harmony and consistency.For axiom systems which have deduction theorem,it can be proved that the consistent formulas set is equivalent to the harmonious one.For axiom systems without deduction theorem,the difference between harmony and consistency is embodied in strong complete proof process of the axiom system.The consistency-based proof of completeness does not rely on deduction theorem,but harmony-based one is constrained by the deduction theorem.This paper will give a harmony-based strong complete proof for the first-order axiom system of QC1.
出处
《华南师范大学学报(社会科学版)》
CSSCI
北大核心
2010年第3期112-116,共5页
Journal of South China Normal University:Social Science Edition
关键词
一致
协调
演绎定理
强完全性
harmonious
consistency
deduction theorem
strong completeness