期刊文献+

基于自相关函数的蛋白质-蛋白质作用位点预测研究

Predicting protein-protein interaction site based on auto-correlation function
原文传递
导出
摘要 蛋白质-蛋白质相互在细胞生命过程扮演重要角色,广泛参与免疫反应,信号传导,基因表达,蛋白质合成等,研究蛋白质-蛋白质作用位点,将有助于揭示生命过程的许多本质,对预防、诊断疾病,以及突变设计、蛋白质相互作用网络构建等方面均具有重要的参考价值。根据蛋白质-蛋白质作用位点残基倾向性及作用位点与其周围临近残基密切相关的特性,本文提出基于序列谱(或空间谱)构建自相关函数,度量邻近残基之间的相关程度,采用AdaBoost分类器预测蛋白质-蛋白质相互作用位点,精度达到67.6%,表明本文的方法预测蛋白质-蛋白质相互作用位点是有效的,为研究蛋白质-蛋白质相互作用位点研究提供了一种新方法。 Protein-protein interactions play an important role in many cellular processes such as immune regulation,signal transduction,gene translation,and protein synthesis.The study of protein-protein interaction site can help us to reveal many essential problems in the life processes,and it also plays a key role in the disease prevention,disease diagnosis,mutant design and protein-protein interaction network construction,etc.According to the protein-protein interface propensity and the correlations among the adjacent residues,a novel method for prediction the protein-protein interaction site was proposed,which used the auto-correlation function to measure the correlation of adjacent residues from the sequence profiles(or spatial profiles).The overall success rate arrived at 67.6%with AdaBoost algorithm.The simulation results show that this method can predict the protein-protein interaction site effectively.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2010年第6期743-746,共4页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(60775012 60634030) 西北工业大学科技创新项目(KC02)
关键词 自相关函数 ADABOOST 序列谱 空间谱 蛋白质-蛋白质作用位点 auto-correlation function AdaBoost sequence profile spatial profile protein-protein interaction site
  • 相关文献

参考文献20

  • 1Alberts B D, Lewi J, Raft M, Roberts K and Watson J D. Molecular Biology of the Cell. 2nd edn, Garland, York.
  • 2Young L, Jemigan R L and CoveU D G Amle for surface hydrophobicity in protein-protein recognition. Protein Science, 1994, 3(5):717-729.
  • 3Jones S and Thornton J M. Principles of protein-protein interactions. Proc Nail Acad Sci USA, 1996, 93(1 ): 13-20.
  • 4Fariselli P, Zauli A and Rossi I, et al. A neural network method to improve .prediction of protein-protein interaction sites in heterocomplexes//IEEE XIII Workshop on Neural Networks for Signal Processing, 2003, 0-7803-8178-5.
  • 5Enright A J, Lucy Skrabanek, and Gary D B. Computational prediction of protein-protein interactions. Mol Biotechnol, 2008, 38(1):1-17.
  • 6Bahadur R P and Zacharias M. The interface of protein-protein complexes Analysis of contacts and prediction of interactions. Cellular and Molecular Life Sciences, 2008, 65:1059-1072.
  • 7Bing Wang and Peng Chen. Predicting protein interaction sites from residue spatial sequence profile and evolution rate. FEBS Letters, 2006, (580):380-384.
  • 8Bradford J R and Westhead D R. Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics, 2005, 21 (8): 1487-1494.
  • 9Jordi E and Oriol R I. Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships. Bioinformatics, 2005, 21(16):3360-3368.
  • 10Zhou H X and Shan Y. Predictionof protein interaction sites from sequence profile and residue neighbor list. Proteins, 2001, 144(3):336-343.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部