期刊文献+

基于Smith预估器的积分切换增益滑模控制 被引量:1

Smith predictor based sliding mode control with integral type switching gain
原文传递
导出
摘要 许多化工过程的传递函数往往包含积分环节和一阶惯性加纯时延环节。由于纯时延的存在,一般的控制方法很难使之稳定,即使能,也需要很长的调节时间且会出现振荡,因此在过程控制中这类系统被公认是一挑战性课题。Smith预估控制能克服纯时延,然而对模型非常依赖,当建模出现误差何不确定时,就会出现较大的振荡,甚至发散。特别是系统有常值干扰时,使用Smith预估控制方法,含积分环节的一阶惯性加纯时延系统则会出现余差。因此,本文提出1种基于Smith预估器的积分切换增益滑模控制,该方法使用1种超前一滞后网络前馈补偿常值干扰,利用滑模控制的鲁棒性以克服系统模型的不确定,系统能够实现渐趋稳定。积分型切换增益减小了系统抖动。仿真研究表明本文提出的方法能够控制好包含积分环节的一阶惯性加纯时延系统,是1种有应用潜力的控制方法。 It is well known that many of chemical process can be described by integrating first-order plus time delay model.Due to time delay,general approaches encounter great difficulties to stabilize them.Even if some of general approaches can stabilize them,it will take long setting time and oscillation will take place in transient process.Therefore,such systems are recognized as a challenging problem in process control.System time delay can be eliminated by Smith predictor.However,conventional Smith predictor depends on the model heavily.The performance will decrease in the presence of modeling uncertainty,for example,great oscillation or even instability will occur.Especially,conventional Smith predictor can not reject constant disturbance for processes with integration.For these existing issues,a new Smith predictor based sliding mode control approach with integral type switching gain is developed in this paper.By using a lead-lag networked,the constant disturbance can be eliminated.Sliding mode control is a robust control method,which can cope with system uncertainty effectively.The proposed control approach can achieve asymptotical stability.Due to employing the integral type switching gain,the system chattering is reduced significantly.Simulation studies show that the proposed approach has good performance,which is a potential control method in application.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2010年第6期756-758,共3页 Computers and Applied Chemistry
基金 国家自然科学基金项目(No.60604017) 国家863高新技术研究项目(No.2009AA04z138) 中央高校基本科研业务费专项资金资助(No.09CX04057A)
关键词 SMITH预估器 滑模控制 前馈补偿 Smith predictor sliding mode control feedforward compensation
  • 相关文献

参考文献10

  • 1Jin Y. Process Control. Beijing: Tsinghua University Press, 2002.
  • 2Rao S A, Seethaladevi S, Uma S and Chidambaram M. Enhancing the performance of parallel cascade control using Smith predictor. ISA Transactions, 2009, 48(6): 220-227.
  • 3Anandanatarajan R and Mourougapragash S. Experimental evaluation of a controller using a variable transformation Smith predictor for a nonlinear process with dead time. ISA Transactions, 2008, 47(2): 217-221.
  • 4Batlle-Feliu, Perez Rivas R, Garia Castillo F J and Rodriguez Sanchez L. Smith predictor based robust fractional order control: Application to water distribution in a main irrigation canal pool. Journal of Process Control, 2009, 19(3): 506-519.
  • 5Utkin V, Guldner J and Shi J. Sliding Mode Control in Electromechanical Systems. London: Taylor & Francis, 1999.
  • 6Chen CT and Peng ST. Design of a sliding mode control system for chemical processes. Journal of Process Control, 2005, 15(5): 515-530.
  • 7Bequette W B. Process Control Modeling Design and Simulation. Prentice Hall. 2003.
  • 8Matausek M R and Micic A D. A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions Automatic Control, 1996, 41(8): 1199-1203.
  • 9Matausek M R and Micic A D. On the modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions Automatic Control, 1999, 44(8): 1603-1606.
  • 10金以慧.过程控制[M].北京:清华大学出版社,2002..

共引文献20

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部