期刊文献+

基于2-(4-苯基-1,2,3-三唑)亚甲基吡啶(PTMP)的过渡金属配合物的合成与晶体结构 被引量:1

The Synthesis and Crystal Structure of Transition Metal Complexes Based on 2-[(4-Phenyl-1,2,3-triazole) methyl]pyridine
下载PDF
导出
摘要 本文报道了一类基于 2-(4-苯基-1,2,3-三唑)亚甲基吡啶(PTMP)配体的过渡金属镍、钴和锌配合物的合成,并通过单晶衍射实验确定了它们的晶体结构。研究结果表明,在这类金属配合物中,PTMP 均通过吡啶氮原子和 1,2,3-三唑中的 2 位氮原子与金属配位,并形成了六元螯合环。在 Co髤及 Ni髤的配合物中,有 2 个 PTMP 参与配位,配位数为 6,配合物的空间构型是畸变的八面体;而在 Zn髤中则只有 1 个 PTMP 参与配位,配位数为 4,配合物的空间构型是变形的四面体。晶体结构数据分析及理论计算结果表明,尽管 PTMP 分子中 1,2,3-三唑环上的 2 位氮原子相对于 3 位氮原子而言,电子云密度较低,但在这类配合物中由于"螯合效应"2 位氮原子仍然表现出了较强的配位能力。 In this paper a series of transition metal(Co,Ni,Zn) complexes based on a ligand,2-[(4-phenyl-1,2,3triazole) methyl] pyridine(PTMP),has been reported.The crystal structure of the complexes is determined by single crystal X-ray diffraction.It is found that PTMP coordinates to the metal via Npy atom of pyridine group and N2 atom of 1,2,3-triazole unit to form a six-member chelating ring.The coordination number of Co(Ⅱ) and Ni(Ⅱ) complexes is 6 with distorted octahedron geometry,but Zn(Ⅱ) adopts distorted tetrahedron geometry with a coordination number of 4.From the crystal structural data and DFT calculation it can be inferred that the "chelating effect" enhances the coordination ability of N2 atom in 1,2,3-triazole group of PTMP even though it has lower electron density than N3 atom.This suggests that coordination of 1,4-subsititued-1,2,3-triazole ligand with different metals will afford an effective approach to construct new coordination supramolecular architectures or synthesize new functional coordination materials.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2010年第7期1133-1140,共8页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金资助项目(No.20774071)
关键词 1 2 3-三唑 合成 过渡金属配合物 晶体结构 1 2 3-triazole transition metal complex synthesis crystal structure
  • 相关文献

参考文献18

  • 1Gavrilova A L,Bosnich B.Chem.Rev.,2004,104:349-384.
  • 2Kolb H C,Finn M C,Sharpless K B.Angew.Chem.Int.Ed.,2001,40:2004-2021.
  • 3Himo F,Lovell T,Hilgraf R,et al.J.Am.Chenu Soc.,2005,127:210-216.
  • 4Lutz J F.Angew.Chem.Int.Ed.,2007,46:1018-1025.
  • 5Mindt T L,Struthers H,Brans L,et al.J.Am.Chem.Soc.,2006,128:15096-15097.
  • 6Happ B,Friebe C,Winter A,et al.Chem-Asian J.,2009,4:154-163.
  • 7Schulze B,Friebe C,Hager M D,et al.Dalton Trans.,2009:787-794.
  • 8Crowley J D,Bandeen P H.Dalton Trans.,2010,39:612-623.
  • 9Li Y J,Huffman J C,Flood A H.Chem.Commun.,2007:2692-2694.
  • 10van Assema S G A,Tazelaar C G J,Bas de Jong G,et al.Orgnometallics,2008,27:3210-3215.

同被引文献33

  • 1Singh G, Felix S P. J. Hazard. Mater., 2002,90:1-17.
  • 2He W D, Zhou G, Li J S. Theochem., 2004,668:201-208.
  • 3Sikder A K, Sikder N. J. Hazard. Mater., 2004,112:1-15.
  • 4Wang W T, Chen S P, Fan G, et al. J. Coord. Chem., 2009, 62:1879-1885.
  • 5Cui Y, Zhang J G, Zhang T L, et al. J. Hazard. Mater., 2008,160:45-50.
  • 6Pin M, Wang T, Jin C M. J. Coord. Chem., 2011,64:600-609.
  • 7Meyer R, Kohler J, Homburg A. Explosives. 5th Ed. Weinheim, Germany: Wiley-VCH, 2002.
  • 8Pagoria P F. Propellants Explos. Pyrotech., 1995,20(1):38-42.
  • 9Tarver C M, Urtiew P A, Tran T D. J. Energe. Mater., 2005, 23(3):183-203.
  • 10Pagoria P F, Lee G S, Mitchell A R, et al. Thermo. Acta, 2002,384(1/2):187-204.

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部