期刊文献+

基于项集信息表的Apriori_T算法

Apriori_T Algorithm based on item sets information table
下载PDF
导出
摘要 事务数据库中关联规则的发现是数据挖掘中一个非常重要的研究领域,关联规则的挖掘通常分为两个步骤,首先找出所有频繁项集,然后由频繁项集产生强关联规则。Apriori算法是查找频繁项集的基本算法,简单明了,易于实现,但存在一些不足。针对Apriori算法需要多次扫描事务数据库,并产生大量候选项集,导致算法效率较低的缺陷,设计了一种基于项集信息表的Apriori_T算法,以表的形式来记录项集信息,避免了重复扫描事务数据库,降低了系统的I/O开销,提高了查找频繁项集的效率。 Discovery of association rules in transaction database is a very important research area of data mining. The discovery of association rules includes two steps, finding out all frequent item sets at first, and then creating strong association rules by frequent item sets. Apriori algorithm is a basic algorithm of finding frequent item sets, which is simple and easy to implement. But apriori algorithm needs to scan the transaction database for several times, and creates a lot of candidate items, which leads to low efficiency. An algorithm named Aprioi_T based on item sets information table is proposed to improve the efficiency. Aprioi_T algorithm avoids scanning the transaction database repeatedly, and reducing the I/O spending of the system, overcomes the defects of Apriori algorithm.
出处 《微计算机信息》 2010年第21期131-133,共3页 Control & Automation
关键词 Apriori_T算法 项集信息表 事务数据库 Aprioi_T algorithm item sets information table transaction database
  • 相关文献

参考文献4

  • 1R.Agrawal, T.Imielinski, and A.Swami. Mining associhtion iules between sets of items in large databases. In ACM SIGMOD Intei. Conf. Management of Data,May 1994.
  • 2徐军莉,喻国平.关联规则挖掘算法的研究和应用[J].微计算机信息,2009(12):193-194. 被引量:5
  • 3Han J.Pei J.Mining frequent patterns without candidate generation. Weidong C,Teffrey F N,Philip A B. Proceeding 2000 ACM SIGM OD International Management of Data(SIGMOD'00).Dallas, TX:ACM Press,2000:1-12.
  • 4张云涛,龚玲.数据挖掘原理与技术.北京:电子工业出版社,2003.5-42.

二级参考文献3

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部