期刊文献+

基于决策树的汽车配置规则预测系统研究 被引量:1

Automatic Learning of Vehicle Configuration Rules Based on a Decision Tree Model
下载PDF
导出
摘要 个性化汽车配置在欧美国家是一种流行的购车方案,目前配置规则判断系统研究领域尚属空白。本文提出了用于自动且有效率地判断客户特定需求的汽车订单是否有效的决策树模型,通过使用SQLServer提供的Analysis Service中的决策树算法和Weka的J48(C4.5算法)分别生成的决策树模型,对不同质量的配置订单群中训练数据和测试数据有效性进行了对比。本文在基于数据挖掘和决策树的研究基础之上,提出了基于决策树的汽车配置规则的预测系统,并且提出了软件系统的设计方案。实验结果表明该配置规则判断系统具有较好的实际应用价值。 Specific vehicle configuration is a popular vehicle purchase method in the countries of Europe and The United States, while research on configuration rule-decision system remains blank. Decision tree, the most widely used model in data mining, is a powerful tool in classification and prediction study. The current problem to be solved is how to automatically and efficiently acquire vehicle configuration rules that specify necessary and sufficient conditions for a vehicle ordered by customers. In this paper, an automatic learning of vehicle configuration rules based on a decision tree model has been proposed based on data mining knowledge and decision tree. At the same time, the software solution is also provided here. Experimental results show that the proposed vehicle configuration rule-decision system presented good practical application value.
作者 张颖
出处 《微计算机信息》 2010年第21期204-205,共2页 Control & Automation
关键词 数据挖掘 决策树 预测系统 Data Mining Decision Tree Automatic Knowledge Acquisition
  • 相关文献

参考文献15

  • 1P. K. Chan, "A critical review of CN2: A polythetic classifier system-" Vanderbih Univ., Dept. Comput. Sci., Nashville, TN, Tech. Rep. CS-88-09, 1988.
  • 2M. S. Aksoy, "Newalgorithms for machine learning," Ph.D. dissertation, Cardiff Univ Wales, Sch. Eng., Cardiff, U.K., 1993.
  • 3E. Brodley and P. E. Utgoff,"Multivariate decision trees,"Mach. Learn., vol. 19, pp. 45 - 77, 1995.
  • 4K. J. Cios and N. Lin, "A machine leaming method for generation of a neural network architecture: A continuous ID3 algorithm," IEEE Trans. Neural Networks, vol. 3, pp. 280 - 290, Apr. 1992.
  • 5U. M. Fayyad and K. B. Irani, "On the handling of continuousvalued attributes in decision tree generation," Mach. Learn., vol. 8, pp. 87 - 102, 1992.
  • 6P. Smyth and R. M. Goodman, "Rule induction using information theory," in Knowledge Discovery in Databases, G. P. Shapiro and W. J. Frawley, Eds: AAAI, 1991, pp. 159 - 176.
  • 7C. Lee, "Generating classification rules from databases," in Proc. Ninth Int. Conf. Applicat. Artificial Intell. Eng., 1994, pp. 205 - 212.
  • 8D. T. Pham and M. S. Aksoy, "A new algorithm for inductive learning," J. Syst. Eng., vol. 5, no. 2, pp. 115 - 122, 1995.
  • 9B. L. Whitehall, S. C. Y. Lu, and R. E. Stepp, "CAQ: A machine learning tool for engineering," Artif. Intell. Eng., vol. 5, no. 4, pp. 189 - 198, 1990.
  • 10"An algorithm for automatic rule induction," Artif. Intell. Eng., vol. 8, pp. 277 - 282, 1993.

二级参考文献8

共引文献8

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部