期刊文献+

基于ARIMA模型的矿区重金属污染时间序列预测 被引量:5

Time Series Prediction of Heavy Metal Pollution in Mining Areas Based on ARIMA Model
下载PDF
导出
摘要 矿区重金属污染具有时间序列的特征,因此可以采用时间序列ARIMA模型对重金属污染进行预测。对南方某铜硫矿,在1995年1月—2008年6月重金属月监测数据的基础上,运用ARIMA模型建立了矿区尾矿库废水总排放口Zn浓度的预测模型,结果表明,ARIMA(1,1,2)模型能较好地拟合2008年1月—2008年6月重金属污染变化规律,经实际计算结果验证所建模型,误差在5%左右,经检验其精度满足要求。预测结果显示,该矿区未来重金属Zn仍然处在污染状态。 Heavy metal pollution in mining areas possesses the character of time series,so time series ARIMA model can be used to forecast heavy metal pollution.Based on monitoring data on heavy metals for a certain copper-sulfide ore in the South during January 1995 and June 2008,ARIMA model is adopted to build the Zn total prediction in wastewater outfall of the mine tailings.The results indicate that ARIMA (1,1,2) model approximates the alteration rule of heavy metals from January 2008 to June 2008,and the prediction error is around 5% between the calculated and the predicted data of mining areas.The forecasting results show that heavy metal Zn contents in the mining area will be still in the state of pollution in future.
出处 《金属矿山》 CAS 北大核心 2010年第6期142-146,共5页 Metal Mine
基金 国家自然科学基金项目(编号:50864007)
关键词 重金属污染 ARIMA模型 时间序列 预测 Heavy Metal Pollution ARIMA model Time Series Prediction
  • 相关文献

参考文献10

二级参考文献37

  • 1高长波,张世喜,莫创荣,陈新庚.广东省生态可持续发展定量研究:生态足迹时间维动态分析[J].生态环境,2005,14(1):57-62. 被引量:53
  • 2国家环境保护局 中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990..
  • 3倪加勋.应用统计学[M].北京:中国人民大学出版社,1992..
  • 4James F V, Michael H R. Heavy metal contamination of soils around a Pb- Zn smelter in Bukowno,Poland[J].Applied Geochemistry,1996, 11(1- 2): 11- 16.
  • 5Lee C H. Assessment of contamination load on water, soil and sediment affected by the Kongjujeil mine drainage,Republic of Korea[J]. Envi-ronmental Geology, 2003,44(5):501- 515.
  • 6Naicker K, Cukrowska E, McCarthy T S. Acid mine drainage arising from gold mining activity in Johannesburg,South Africa and environs[J]. Environmental Pollution,2003,22(1):29- 40.
  • 7Dang Z, Liu C Q, Martin J H. Mobility of heavy metals associated with the natural weathering of coal mine spoils[J].Environmental Pollution, 2002, 118(3): 419- 426.
  • 8Atilla A, Murat B, Mustafa K, et al. Heavy metal pollution and acid drainage from the abandoned Balya Pb- Zn Sulfide Mine, NVV Ana-tolia, Turkey[J].Environmental Geology,2003,45(2):198- 208.
  • 9Chou H T, Ahn J S, Jung M C. Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul, Korea[J]. Environ Geochem Health, 1998, 20(2): 77- 86.
  • 10Jung M C. Heavy metal contamination of soils and waters in and around the Imcheon Au- Ag mine, Korea[J].Applied Geochemistry,2001, 16(11- 12):1369- 1375.

共引文献334

同被引文献48

  • 1吕金虎.复杂动力网络的数学模型与同步准则[J].系统工程理论与实践,2004,24(4):17-22. 被引量:40
  • 2宁媛,李皖.图像去噪的几种方法分析比较[J].贵州工业大学学报(自然科学版),2005,34(4):63-66. 被引量:37
  • 3张丽旭,蒋晓山,赵敏,李志恩.长江口海域表层沉积物污染及其潜在生态风险评价[J].生态环境,2007,16(2):389-393. 被引量:38
  • 4胡寿松,张正道.基于神经网络的非线性时间序列故障预报[J].自动化学报,2007,33(7):744-748. 被引量:16
  • 5Box G E P,Jenkins G M. Time Series Analysis: Fore- casting and Control [-M]. SanFrancisco: Holden-day,1970.
  • 6Gong S H,Gao Y F,Shi H B,et al. A Practical MGA- ARIMA Model for Forecasting Real-time Dynamic Rain-induced Attenuation [J]. Radio Science, 2013, 48 (33:208-225.
  • 7Wu X J,Jiang G C,Wang X J,et al. Prediction of Res- ervoir Sensitivity Using RBF Neural Networkwith Trainable Radial Basis Function[J]. Neural Computing & Applications, 2013,22 (5) : 947-953. Y.
  • 8in J C,Zou Z J,Xu F. On-line Prediction of Ship Roll Motion during Maneuvering Using Sequential learningRBF Neural Networks [J]. Ocean Engineering, 2013, 61:139-147.
  • 9Flores J J, Graft M, Rodriguez H. Evolutive Design of ARMA and ANN Models for Time Series Fore- castin[-J]. Renewable Energy, 2012,44 : 225-230.
  • 10Zou P,Yang J S,Fu J R,et al. Artificial Neural Net- work and Time Series Models for Predicting Soil Salt and Water Content [J]. Agricultural Water Management,2010,97(12) :2 009-2 019.

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部