期刊文献+

基于改进遗传算法的无人飞行器三维路径规划 被引量:24

A Three Dimensional Path Planning for Unmanned Air Vehicle Based on Improved Genetic Algorithm
下载PDF
导出
摘要 文章针对现有无人飞行器低空突防三维路径规划方法工程实现困难等问题,提出了一种基于改进遗传算法的三维路径规划方法。该方法对地形高程数据进行综合平滑处理,建立满足无人飞行器机动性能的安全飞行曲面,结合威胁的量化模型,采用改进遗传算法在安全飞行曲面上规划出三维飞行路径。将实际工程中的部分约束条件应用到改进遗传算法的设计中,提高了算法搜索效率,且算法结构简单,易于工程实现。仿真结果表明,算法执行效率高,能满足无人飞行器低空突防路径规划的工程性需要。 A three dimensional path planning method based on an improved genetic algorithm is proposed. It can be used for effective and engineering-oriented path planning of low altitude penetration of an unmanned air vehicle (UAV). First, Digital terrain information is processed by integrated terrain elevation smoothing algorithm. Then, The safe surface is formed by considering the maneuverability of the UAV, and the threat model is built too. Final- ly, an improved genetic algorithm is proposed to plan the three dimensional paths on the safe surface. The algorithm's search efficiency is improved by considering some practical constraints in the design, and the algorithm's structure is simple and easily realized in engineering. The simulation result indicates that the palnning algorithm is efficient and can meet the requirements of engineering realization.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第3期343-348,共6页 Journal of Northwestern Polytechnical University
关键词 改进遗传算法 路径规划 威胁模型 低空突防 工程实现 improved genetic algorithm path planning threat model low altitude penetration engineering realization
  • 相关文献

参考文献7

  • 1Myung Hwangho,James Kuffner,Takeo Kanado.Efficient Two-Phase 3D Motion Planning for Small Fixed Wing UAVs.IEEE International Conference on Robotics and Automation,Roma,Italy,2007.
  • 2唐强,王建元,朱志强.基于粒子群优化的三维突防航迹规划仿真研究[J].系统仿真学报,2004,16(9):2033-2036. 被引量:53
  • 3Zachary Wilson Spritzer.Comparison of Path-Planning and Search Methods.Morgantown,West Virginia:West Virginia University,2004.
  • 4马云红,周德云.基于遗传算法的无人机航路规划[J].电光与控制,2005,12(5):24-27. 被引量:60
  • 5胡志忠,徐克虎,沈春林.低空突防用数字地形的平滑处理[J].南京航空航天大学学报,2000,32(5):493-498. 被引量:26
  • 6Menon P K A,Kim E,Cheng V H L.Optimal Trajectory Synthesis for Terrain-Following Flight.Journal of Guidance,Control,and Dynamics.1991,14(4):807-813.
  • 7Yang G V K.Optimal Path Planning for Unmanned Air Vehicles with Kinematic and Tactical Constraints.Proceedings of the American Control Conference,Las Vegas,NV,2002.

二级参考文献13

  • 1李清,学位论文,1998年
  • 2袁卫东,学位论文,1996年
  • 3杨彦春.无人驾驶飞机[M].北京:国防工业出版社,1985..
  • 4BORTOFF S A. Path planning for UAVS[A]. Proceeding of the American control conference [C] . 2000,364 - 368.
  • 5HAN W G, BAEK S M, KUC T Y. Genetic algorithm Based Path Planning and Dynamic Obstacle Avoidance of Mobile Robots[A]. IEEE [C]. 1997,2747 - 2751.
  • 6RAM A, ARKIN R, BOONE G, PEARCE M. Using Gentic Algorithms to learn reactive conlrol Parameters for Autonomous Robotic Navigation[J]. Adaptive Behaviour, 1994,2(3) :277-304.
  • 7刘勇 康立山 陈毓屏.非数值并行算法—遗传算法[M].北京:科学出版社,1997..
  • 8Technical Conference and workshop on Unmanned aerospaceVehicles[C]. May, 2002.
  • 9P. K. A. Menon, E.Kim, V. H. L. Cheng. Optimal Trajectory Synthesis for Terrain-Following Flight[J]. Journal of Guidance, Control, and Dynamics, 1991,14(4):807-813.
  • 10James Kennedy, Russell C. Eberhart. Particle Swarm Optimization[C]. Perth, Western Australia: IEEE International Conference on Neural Networks, 1995: 1942-1948.

共引文献129

同被引文献223

引证文献24

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部