期刊文献+

基于概率加权矩的三参数Weibull分布母体百分位值和可靠度置信限估计的新方法 被引量:6

A Practical and Effective Method for Estimating Confidence Limits of Population Percentile and Reliability of Three-Parameter Weibull Distribution on Probability Weighted Moment
下载PDF
导出
摘要 利用概率加权矩对Weibull分布三个参数的无偏估计以及Bootstrap方法再抽样的统计特性,文章提出了一种三参数Weibull母体百分位值置信限和可靠度置信限估计的新方法,所提方法概念清晰且易于实现。大量的数字模拟表明:所提方法在计算精度和效率方面均优于已有的估计方法,实际应用算例也表明所提方法具有较高的工程实用性。 Aim. The introduction of the full paper points out what we believe to be the shortcomings of Ref. 1 authored by Fu Huimin et al. We explain in sections 1 and 2 a new method that is, in our opinion, not only more effective but also suitable for engineering problems. The core of sections 1 and 2 is: "we propose a new method for estimating confidence limits of population percentile and reliability for three-parameter Weibull distribution by using the unbias of probability weighted moment in Refs. 2 and 3 and the good statistic properties of Bootstrap method in Refs. 4 and 5, our method has clear concepts and is easy to implement. " Section 3 analyzes two numerical exampies and experimental data on fatigue life. The analysis results, given in Tables 1 and 2, show preliminarily that our method is more effective in terms of computation efficiency and precision than the existing estimation methods. The analysis of the experimental data in Ref. 2 on an engineering example verifies that our method is suitable for solving engineering problems.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第3期470-475,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(10572117 50875213) 航空基金(2007ZA53012) 民口863计划课题(2007AA04Z401)资助
关键词 三参数WEIBULL分布 母体百分位值 可靠度 BOOTSTRAP方法 概率加权矩 置信限 fatigue of materials, Weibull distribution, reliability, probability, three-parameter Weibull distribution, population percentile, Bootstrap method, probability weighted moment, confidence limit
  • 相关文献

参考文献5

二级参考文献31

  • 1傅惠民.二维单侧容限系数方法[J].航空学报,1993,14(3). 被引量:24
  • 2傅惠民.正态分布百分位值和百分率的置信限和容忍限公式[J].航空学报,1994,15(1):94-101. 被引量:40
  • 3傅惠民,高镇同,徐人平.母体百分位值的置信下限[J].北京航空航天大学学报,1990,16(3):1-8. 被引量:10
  • 4[1]Inman, Daniel J. Vibration with Control, Measure-ment, and Stability[M]. New Sersey: Prentice-Hall, Inc., 1989.
  • 5[2]Meirovitch L.Dynamics and Control[M].New York: Wiley, 1990.
  • 6[3]Maghami P G, Juang J N. Efficient eigenvalue assi-gnment for large space structures[J]. Journal of Guidance, Control and Dynamics, 1990,13(6):1033-1039.
  • 7[4]Chen Y D, Chen S H, Liu Z S. Modal optimalcontrol procedure for near defective systems[J]. Journal of Sound and Vibration, 2001,245(1):113-132.
  • 8[5]Chen Y D, Chen S H, Liu Z S. Quantitative measures of modal controllability and observability for the defective and near defective systems[J]. Journal of Sound and Vibration, 2001,248(3):413-426.
  • 9[6]Chen Jiawen, Cheng Jinshing, Hsieh Jerguang. Tra-cking control for uncertain nonlinear dynamical systems described by differential inclusions[J]. Journal of Mathematical Analysis and Applications,1999,236(2):463-479.
  • 10[7]Marc Quincampoix, Nicolas Seube. Stabilization ofuncertain control systems through piecewise constant feedback[J]. Journal of Mathematical Analysis and Applications, 1998,218(1):240-255.

共引文献44

同被引文献47

  • 1陈塑寰,郭克尖,陈宇东.不确定性参数系统振动控制闭环特征值的上、下界估计[J].计算力学学报,2004,21(5):528-534. 被引量:23
  • 2邓建,古德生,李夕兵.确定可靠性分析Weibull分布参数的概率加权矩法[J].计算力学学报,2004,21(5):609-613. 被引量:5
  • 3胡文忠.用矩法估算Weibull分布三参数[J].太阳能学报,1996,17(4):348-352. 被引量:10
  • 4XIA Xintao.Forecasting method for product reliability along with performance data[J].Journal of Failure Analysis and Prevention,2012,12(5):532-540.
  • 5Pierce D M,Zeyen B,Huigens B M,et al.Predicting the failure probability of device features in MEMS[J].IEEE Transactions on Device and Materials Reliability,2011,11(3):433-441.
  • 6Abbasi B,Niaki S T A,Khalife M A,et al.A hybrid variable neighborhood search and simulated annealing algorithm to estimate the three parameters of the Weibull distribution[J].Expert Systems with Applications,2011,38(1):700-708.
  • 7El-Adll M E.Predicting future lifetime based on random number of three parameters Weibull distribution[J].Mathematics and Computers in Simulation,2011,81(9):1842-1854.
  • 8Bartkute N V,Sakalauskas L.Consistent estimator of the shape parameter of three-dimensional Weibull distribution[J].Communications in Statistics:Theory and Methods,2011,40(16):2985-2996.
  • 9Dario P T C,Thomas U.General probability weighted moments for the three-parameter Weibull distribution and their application in S-N curves modeling[J].International Journal of Fatigue,2011,33(12):1533-1538.
  • 10REN Gongchang,YANG Zhiwei,MENG Bomin.Reliability evaluation on machining center based on three-parameter Weibull distribution[J].Advanced Materials Research,2012,430/431/432:1645-1649.

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部