摘要
运用特征根法等方法,分别研究一类四阶时滞差分方程xn+4-axn+bxn-l=0,当参数l为偶数和奇数时其特征方程所有特征根的分布情况,从而给出方程零解渐近稳定的充要条件。这些结果为解决具有此类模型的实际问题提供了理论依据。
By using the method of characteristic roots and other methods, the distribution of all characteristics roots of the delay difference equation x,+4 -axn + bxn-1 =0 is studied when the parameters I is even and odd, and thereby, necessary and sufficient conditions are given for asymptotic stability of the zero solution of the delay difference equations. This offers a theoretical basis for solving the practical problems with such models.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2010年第3期323-331,共9页
Journal of Natural Science of Heilongjiang University
基金
黑龙江省自然科学基金资助项目(A0207)
关键词
时滞差分方程
渐近稳定
特征方程
delay difference equation
asymptotic stability
characteristic equation