期刊文献+

一类四阶时滞差分方程的渐近稳定性研究 被引量:1

Study of asympotic stability of a class of 4-th order delay difference equations
下载PDF
导出
摘要 运用特征根法等方法,分别研究一类四阶时滞差分方程xn+4-axn+bxn-l=0,当参数l为偶数和奇数时其特征方程所有特征根的分布情况,从而给出方程零解渐近稳定的充要条件。这些结果为解决具有此类模型的实际问题提供了理论依据。 By using the method of characteristic roots and other methods, the distribution of all characteristics roots of the delay difference equation x,+4 -axn + bxn-1 =0 is studied when the parameters I is even and odd, and thereby, necessary and sufficient conditions are given for asymptotic stability of the zero solution of the delay difference equations. This offers a theoretical basis for solving the practical problems with such models.
作者 文斌 任洪善
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2010年第3期323-331,共9页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省自然科学基金资助项目(A0207)
关键词 时滞差分方程 渐近稳定 特征方程 delay difference equation asymptotic stability characteristic equation
  • 相关文献

参考文献7

二级参考文献25

  • 1欧阳成,莫嘉琪.一个非线性方程转向点问题[J].应用数学,2001,14(2):6-7. 被引量:8
  • 2欧阳成.二阶半线性常微分方程Robin边值问题的奇摄动[J].数学物理学报(A辑),2005,25(2):251-255. 被引量:20
  • 3王慧敏,张然,金光日,毓石.一类p-Laplace方程多点边值问题的数值计算[J].吉林大学学报(理学版),2007,45(3):358-364. 被引量:2
  • 4Agarwal R P. Difference Equations and Inequalities [M]. New York: Marcel Dekker Inc, 1992.
  • 5JIN Chun-hua, YIN Jing-xue. Positive Solution for the Boundary Value Problems of 0ne-dimension p-Laplacian with Delay [J]. J Math Anal Appl, 2007, 330(2) : 1238-1248.
  • 6HE Zhi-min. On the Existence of Positive Solutions of p-Laplacian Difference Equations [ J ]. J Comput Appl Math, 2003, 161 ( 1 ) : 193-201.
  • 7JIANG Da-qing, CHU Ji-feng, O' Regan D, et al. Positive Solutions for Continuous and Discrete Boundary Value Problems to the One-dimension p-Laplacian [ J ]. Mathematical Inequalities Applications, 2004, 7 (4) : 523-534.
  • 8JIANG Da-qing, ZHANG Li-li, O' Regan D, et al. Existence Theory for Single and Multiple Solutions to Singular Positone Discrete Dirichlet Boundary Value Problems to the One-dimension p-Laplacian [ J ]. Archivum Mathematicum (Brno) , 2004, 40: 367-381.
  • 9LIU Yu-ji. Positive Solutions of Multi-point BVPs for Second Order p-Laplacian Difference Equations [ J ]. Communications in Mathematical Analysis, 2008, 4( 1 ) : 58-77.
  • 10GUO Da-jun, Lakshmikantham V. Nonlinear Problems in Abstract Cones [ M]. Boston: Academic Press, 1988.

共引文献7

同被引文献5

  • 1S.A.Kuruklis. The Asymptotic Stability of xx+l-axo+bn-1=0,[J].Math. Anal. Appl., 1994, 188: 719-731.
  • 2Hongshan Ren, Stability Analysis of Second Order Delay Difference Equations, [J]. Funkcialaj Ekvacioj, 2007, 50: 405-419.
  • 3Yangtao Wang and Hongshan Ren, Asymptotic Stability of Third Delay Difference Equations with Two Constant Coefficients [J], Aduance on Biomathematics, Volume II, Proceeding of the 6th Conference of Biomathematics, Liverpool,UK: World Academic press,2008:738-739.
  • 4F. M. Dannan, The Asymptotic Stability of xn+k+axn+bxn-1=O,[J]. Journal of Difference Equations and Applications, 2004,10(6): 589-599.
  • 5V.Lakshmikantham Emd Donato Trigiante,Theory of Difference Equations: Numerical Methods and Applications,Second Edition, [M]. Academic Press, New York, 2002:103-109.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部