期刊文献+

基于自适应遗传算法的冷连轧轧制力模型自学习 被引量:11

Adaptive Learning of Rolling Force Model Based on Adaptive Genetic Algorithm in Tandem Cold Rolling
下载PDF
导出
摘要 为提高轧制力模型的设定精度,以包含冷连轧带钢轧制过程变形区金属塑性变形和入口、出口弹性变形的Bland-Ford-Hill模型作为冷连轧轧制力模型,提出利用改进自适应遗传算法对平均变形抗力和摩擦系数进行寻优搜索,得出满足实际轧制力精度的平均变形抗力和摩擦系数,进而通过指数平滑法计算出平均变形抗力和摩擦系数的自学习系数,实验结果表明,该模型自学习后轧制力的设定精度可以满足在线控制的要求。 To improve the precision of rolling force model in tandem cold rolling,the Bland-Ford-Hill model was used for rolling force model in which the plastic deformation in bite zone and elastic deformation at entry and exit of bite zone were considered.Aiming at the actual precision of the rolling force,an improved adaptive genetic algorithm was proposed in order to search the deformation resistance and the friction coefficient.Further, the adaptive learning coefficient of the deformation resistance and the friction coefficient could be obtained by way of exponential smoothing average.The experiment results showed that the accuracy of the actual value of rolling force could meet the requirement of on-line process control.
出处 《轧钢》 北大核心 2010年第3期7-10,共4页 Steel Rolling
基金 "十一五"国家科技支撑计划项目(2007BAF02B12)
关键词 冷连轧 轧制力模型 自适应遗传算法 自适应学习 tandem cold rolling rolling force model adaptive genetic algorithm adaptive learning
  • 相关文献

参考文献6

  • 1Son Joon Sik,Lee Duk Man,Kim Illsoo,et al.A Study Online Learning Neural Network for Prediction for Rolling Force in Hot-rolling Mill[J].Materials ProeessingTechnology,2005,(164-165):1612-1617.
  • 2马庆龙,王东城,刘宏民,席英信,郝彦军,吴斌.基于神经网络和自适应预报模型参数的平整轧制力模型[J].塑性工程学报,2008,15(3):191-194. 被引量:7
  • 3Pires C T A,Ferreira H C.Adaptation for Tandem Cold Mill Models[J].Materials Processing Technology,2009,209(7),3592-3596.
  • 4白金兰,王军生,王国栋,刘相华.提高冷轧过程控制轧制力模型的设定精度[J].钢铁研究学报,2006,18(3):21-25. 被引量:27
  • 5曹鸿德.塑性变形力学基础与轧制原理[M].北京:机械工业出版社,1982:228-229.
  • 6Srinvas M,Patnaik L M.Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[J].IEEE Tansactions on Systems,Man and Cybernetics,1994,24(4),656-666.

二级参考文献12

  • 1白振华.薄带平整轧制时轧制压力模型的研究[J].机械工程学报,2004,40(8):63-66. 被引量:19
  • 2白金兰,王军生,王国栋,刘相华.提高冷轧过程控制轧制力模型的设定精度[J].钢铁研究学报,2006,18(3):21-25. 被引量:27
  • 3宋美娟,杨节,胡衍生.热连轧窄带钢自适应控制在线确定增益系数的研究[J].钢铁研究,1996,24(5):15-18. 被引量:3
  • 4杨节.轧制过程数学模型[M].北京:冶金工业出版社,1993..
  • 5Lee W H,Kwak J H,Park C J.Study on the Adaptation Method of Control Model for Tandem Cold Rolling Mill[J].Proceedings of the Japan/USA Symposium on Flexible Automation,1996,2(3):1035-1038.
  • 6Venkata R N,Suryanarayana G.A set-Up Model for Tandem Cold Rolling Mills[J].Journal of Materials Processing Technology,2001,116(10):269-277.
  • 7Larkiola J,Myllykoski P,Nylander J.Prediction of Rolling Force in Cold Rolling by Using Physical Models and Neural Computing[J].Journal of Materials Processing Technology,1996,60(6):381-386.
  • 8Yarita Ikuo,Kitahama Masanori,Kenmochi Kazuhito.Recent Activities in Research of Rolling Technologies[J].Kawasaki Steel Technical Report,1999,41 (8):20-24.
  • 9Yuli LIU. Won-ho LEE. Mathematical Model for the Thin Strip Cold Rolling and Temper Rolling Process with the Influence Function Method[J]. ISIJ International,2005.45(8) : 1173-1178
  • 10J S Wang, Z Y Jiang, A K Tieu. Adaptive Calculation of Deformation Resistance Model of Online Process Control in Tandem Cold Mill[J]. Journal of Materials Processing Technology, 2005. 162 : 585-590

共引文献33

同被引文献129

引证文献11

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部