摘要
以某火控系统为例,在火控系统数学模型复杂而无法从理论上推导一阶偏导数的函数解析表达式时,提出了用数值微分法求解复杂火控系统数学模型的一阶偏导数(即误差传递系数),洋细介绍了数值微分公式和微分步长的选取以及数值微分结果的确定,并用Monte Carlo统计数学方法进行了验证,说明了用数值微分法求取一阶偏导数数值进行系统精度分析的正确性。
A fire control system is designated as an example to demonstrate the complexity of mathematical models of fire control systems, which can not theoretically infer the analytical formulation of first partial derivatives. Using numerical differentiation for solving first partial derivative of complex mathematical model is proposed. The numerical differential formulation,selecting differential steplength and determining results of numerical differentiation are introduced in detail. The calculating results are demonstrated by using Monte Carlo statistical method.
出处
《战术导弹技术》
1999年第1期22-32,共11页
Tactical Missile Technology
关键词
飞航导弹
火控系统
数学模型
射击诸元
精度分析
Cruise missile Fire control system Mathematical model Firing data Linearized method Numerical differentiation Accuracy analysis