期刊文献+

超高韧性水泥基复合材料增强普通混凝土复合梁弯曲性能的理论分析 被引量:6

Theoretical analysis of flexural performance of plain concrete composite beams strengthened with ultrahigh toughness cementitious composite
下载PDF
导出
摘要 假定不考虑普通混凝土起裂后粘聚软化对承载力的贡献,理论研究了超高韧性水泥基复合材料UHTCC增强普通混凝土复合梁的弯曲性能。使用三组UHTCC/混凝土复合梁四点弯曲试验数据验证了理论公式,并对UHTCC增强层厚度、混凝土抗压强度以及UHTCC的拉应力应变控制参数对复合梁弯曲承载力和最小UHTCC层厚度的影响进行了分析。结果表明,最小UHTCC层厚度与梁高的比值不随梁高的增加而变化,在复合梁几何尺寸及UHTCC性能保持不变的情况下,随着混凝土抗压强度的增加,UHTCC层的最小厚度增加,且发生受压破坏的复合梁的极限承载力亦增加;在复合梁几何尺寸及混凝土强度相同条件下,UHTCC材料开裂后的刚度和强度对UHTCC层最小厚度影响比较显著,应变能力对承载力-梁底拉应变曲线没有影响,复合梁的承载力随着开裂强度和极限强度的增加而增大。 A theoretical investigation on the flexural performance of UHTCC/concrete composite beams is presented. The contribution of the tension softening cohesive force at the crack of concrete to the load-carrying capacity of the composite beams was not taken into account. Four-point bending experimental results of three sets of UHTCC/Concrete composite beams were employed to validate the theoretical analysis. A parametric study was carried out, including parameters such as the UHTCC layer thickness, the compressive strength of concrete as well as the tension control parameters of UHTCC, to get a clear understanding of the degree of the influence of various parameters on the flexural performance and the minimum UHTCC layer thickness of the composite beams. The results revealed that ( 1 ) the depths of composite beams did not infuence the ratio of the minimum thickness of UHTCC layer to depth; (2) when beam size and UHTCC are identical, the minimum thickness of UHTCC and the ultimate flexural capacity of the beams in compression failure mode increased as the compressive strength of concrete increased; and (3) when the size and the concrete are identical, the stiffness after cracking and the tensile strength of UHTCC more significantly affected the minimum depth of UHTCC layer. The curves of fexural load-carrying capacity vs. tensile strain at the bottom of the beams were not affected by the tensile strain of UHTCC, but the flexural load-carrying capacity of the beams increased with increases in first cracking tensile strength and ultimate tensile strength.
出处 《土木工程学报》 EI CSCD 北大核心 2010年第7期51-62,共12页 China Civil Engineering Journal
基金 国家自然科学基金重点项目(50438010) 南水北调工程建设重大关键技术研究及应用项目(JGZXJJ2006-13)
关键词 超高韧性水泥基复合材料(UHTCC) 混凝土 复合梁 弯曲性能 UHTCC层最小厚度 Ultra High Toughness Cementitious Composite (UHTCC) concrete composite beam flexural performance minimum thickness of UHTCC layer
  • 相关文献

参考文献17

  • 1Li V C, Wang S,Wu C. Tensile strain-hardening behavior of PVA-ECC [ J ]. ACI Materials Journal. 2001, 98 (6) : 483-492.
  • 2Li V C, Wu H C. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites [ J ]. Journal of Applied Mechanics Review, 1992, 45 (8) :390-398.
  • 3Kong H J, Bike S , Li V C. Development of a self-compacting ECC employing electrosteric dispersion/stabilization [ J ]. Cement Concrete Composites ,2003, 25 ( 3 ) : 301-309.
  • 4Kim Y Y , Kong H J , Li V C . Design of engineered cementitious composite (ECC) suitable for wet-mix shotcreting [ J ]. ACI Materials Journal, 2003, 100 (6) : 511-518.
  • 5Stang H , Li V C . Extrusion of ECC - material [ C ] / / Proceedings of HPFRCC 3. Chapman & Hull, 1999: 203 -212.
  • 6LI Victor C.高延性纤维增强水泥基复合材料的研究进展及应用[J].硅酸盐学报,2007,35(4):531-536. 被引量:189
  • 7Zhang Jun, Christopher K Y L , Cheung Y N. Flexural performance of layered ECC-concrete composite beam [ J]. Composites Science and Technology, 2006, 66 (11/12): 1501-1512.
  • 8Christopher K Y L, Cheung Y N , Zhang Jun. Fatigue enhancement of concrete beam with ECC layer [ J ]. Cement and Concrete Research. 2007, 37 (5) : 743-750.
  • 9Shin S K, Kim J J H, Lim Y M. Investigation of the strengthening effect of DFRCC applied to plain concrete beams [ J ]. Cement & Concrete Composites, 2007, 29 (6) : 465- 473.
  • 10Li M , Li V C. Behavior of ECC,/concrete layered repair system under drying shrinkage conditions [ J ]. International Journal for Restoration of Buildings and Monuments,2006,12(2):143-160.

二级参考文献69

  • 1Li V C , Wu H C. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites [ J ]. Journal of Applied Mechanics Review, 1992, 45 (8) : 390-398.
  • 2Li V C, Wang S, Wu C. Tensile strain-hardening behavior of PVA-ECC[ J]. ACI Journal of Materials,2001,98(6) : 483-492.
  • 3Maalej M , Li V C. Introduction of strain-hardening engineered cementitious composites in design of reinforced concrete flexural members for improved durability [ J ]. ACI Structural Journal, 1995, 92(2) : 167-176.
  • 4Li V C. Integrated structures and materials design [ J ]. Materials and Structures, 2007,40 (4) :387-396.
  • 5徐世烺.超高韧性绿色ECC新型材料研究及应用[R].大连:大连理工大学,2007.
  • 6ACI 318-95 Building code requirements for structural concrete [ S ].
  • 7Hassoun M N. Design of reinforced concrete structures [C]. USA: PWS publishers ,1985 :14-182.
  • 8American Society of Civil Engineers. Report card for Amercia' s infrastructure ,2005 [ EB/OL]. [ 2008-06-06]. http :// www. asce. org/reportcard/2005/page. cfm? id = 103.
  • 9Newhook J, Ghali A, Tadros G. Cracking and deformability of concrete flexural sections with fiber reinforced polymer [ J ]. Engineering Structures, 21302,128 (9) : 1195-1201.
  • 10Esfahani M R, Kianoush M R, Tajari A R. Flexural behavior of reinforced concrete beams strengthened by CFR Psheets [J]. Engineering Structures, 2007, 29(10) :2428-2444.

共引文献217

同被引文献53

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部