摘要
研究(F_1,F_2)-攀援集的迭代不变性.定义了与正整数k相关的Furstenberg族的性质P(k)和Q(k).指出:对任意介于0,1之间的实数s而言,Furstenberg族M(s)具有性质P(k)和Q(k),其中■(s)表示非负整数集的所有上密度不小于s的无限子集构成的集族.据此证明了:对任意正整数k,S为系统(X,f)的(■(s),■(t))-攀援集当且仅当S为系统(X,f^k)的(■(s),■(t))-攀援集,其中s,t是介于0,1之间的任意给定的实数.
This paper deals with the invariance(F_1,F_2)-scrambled set under iterations. For a positive integer k,the properties P(k) and Q(k) of Furstenberg families are introduced.It is shown that for any s∈[0,1],the Furstenberg family M(s) has the properties P(k) and Q(k),where M(s) denotes the family of all infinite subsets of Z_+ whose upper density is not less than s.Furthermore,we prove that for any positive integer k,S is an( ■(s), ■(t))-scrambled set of(X,f) if and only if S is an ( ■(s), ■(t))-scrambled set of(X,f^k),where s,t∈[0,1].
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2010年第4期727-732,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10771079)
广州市属高校科技计划项目(08C016)