期刊文献+

(F_1,F_2)-攀援集的一些注记 被引量:2

Some Remarks on (F_1,F_2)-Scrambled Sets
原文传递
导出
摘要 研究(F_1,F_2)-攀援集的迭代不变性.定义了与正整数k相关的Furstenberg族的性质P(k)和Q(k).指出:对任意介于0,1之间的实数s而言,Furstenberg族M(s)具有性质P(k)和Q(k),其中■(s)表示非负整数集的所有上密度不小于s的无限子集构成的集族.据此证明了:对任意正整数k,S为系统(X,f)的(■(s),■(t))-攀援集当且仅当S为系统(X,f^k)的(■(s),■(t))-攀援集,其中s,t是介于0,1之间的任意给定的实数. This paper deals with the invariance(F_1,F_2)-scrambled set under iterations. For a positive integer k,the properties P(k) and Q(k) of Furstenberg families are introduced.It is shown that for any s∈[0,1],the Furstenberg family M(s) has the properties P(k) and Q(k),where M(s) denotes the family of all infinite subsets of Z_+ whose upper density is not less than s.Furthermore,we prove that for any positive integer k,S is an( ■(s), ■(t))-scrambled set of(X,f) if and only if S is an ( ■(s), ■(t))-scrambled set of(X,f^k),where s,t∈[0,1].
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第4期727-732,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10771079) 广州市属高校科技计划项目(08C016)
关键词 Furstenberg族 攀援集 混沌 Furstenberg family scrambled set chaos
  • 相关文献

参考文献11

  • 1Akin E., Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions, New York: Plenum Press, 1997.
  • 2Huang W., Shao S., Ye X., Mixing and proximal cells along sequences, Nonlinearity, 2004, 17: 1245-1260.
  • 3Shao S., Proximity and distality via Furstenberg families, Topology and its Applications, 2006, 153: 2055- 2072.
  • 4Xiong J. C., Lii J., Tan F., Furstenberg family and chaos, Science in China Ser. A, 2007, 50: 1325-1333.
  • 5Schweizer B., Smital J., Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 1994, 334: 737-754.
  • 6Balibrea F., Smltal J., Stefankova M., The three versions of distributional Chaos, Chaos, Solitions and Fractals, 2005, 23: 1581-1583.
  • 7Tan F., Xiong J. C., Chaos via Furstenberg family couple, Topology and its Applications, 2009, 156: 525-532.
  • 8Blanchard F., Huang W., Snoha L., Topological size of scrambled sets, Colloq. Math., 2008, 110: 293-361.
  • 9Wang L. D., Huan S. M., Huang G. F., A note on Schweizer-Smital chaos, Nonlinear Analysis, 2008, 68: 1682-1686.
  • 10Yuan D. L., On Distributional Chaos, South China Normal University Ph.D.Thesis, in Chinese, 2008.

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部