期刊文献+

常利率风险模型下T-A目标函数的最大化

Maximization of T-A Objective Function for the Risk Model with Constant Interest Force
原文传递
导出
摘要 本文研究了带常利率扩散风险模型,考虑了下面的目标函数V(x,L)=E(integral from n=0 toτe^(-βt)dL_t+integral from n=0 toτe^(-βt)∧dt|R_0~L=x),这里常数∧≥0.我们称上面的表达式为T-A(Thonhauser and Albrecher)目标函数.对于常利率下的扩散模型,通过随机控制理论(HJB方程),T-A目标函数的最大化问题得以解决:对于有界分红率,最优策略是门槛策略;对于无界分红率,最优策略是边界策略. In this paper,we study the diffusion risk model with constant interest force, and consider the following objective function where constant A≥0.We may call the above expression T-A(Thonhauser and Albrecher) objective function.For the diffusion risk model with constant interest force, maximization of T-A objective function is solved by stochastic control theory(HJB equations):For bounded dividend intensity,optimal strategy is a threshold strategy; for unbounded dividend intensity,optimal strategy is a barrier strategy.
作者 孟辉
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第4期795-804,共10页 Acta Mathematica Sinica:Chinese Series
基金 中央财经大学211工程三期资助 教育部人文社会科学重点研究基地项目基金(2009JJD790053)
关键词 扩散模型 利息率 T-A目标函数 diffusion model interest force T-A objective function
  • 相关文献

参考文献13

  • 1Asmussen S., Taksar M., Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 1997, 20: 1-15.
  • 2Asmussen S., Hφjgaard B., Taksar M, Optimal risk control and dividend distribution policies, Example of excess of loss reinsurance for an insurance corporation, Finance and Stochastics 2000, 4: 299-324.
  • 3Cai J., Gerber H. U., Yang H. L., Optimal dividends in an Ornstein-Uhlenbeck type model with credit and debit interest, North American Acturarial Jouranl, 2006, 10(2): 94-119.
  • 4Choulli T., Tadsar M., Zhou X. Y., Excess of loss reinsurance for a company with debt liability and constraints on risk reduction, Quantative Finance, 2003, 1: 573-596.
  • 5Gerber H. U., Shiu E. S. W., Optimal dividends: analysis with Brownian motion, North American Actuarial Journal, 2004, 8(1): 1-20.
  • 6Gerber H. U., Shiu E. S. W., On optimal dividends: from reflection to refraction, Journal of Computational and Applied Mathematics, 2006, 186(1): 4-22.
  • 7Hφjgaard B., Taksar M., Controling risk exposure and dividends pay-out schemes: Insurance company example, Mathematical Finance 1999, 9(2): 153-182.
  • 8Hφjgaard B., Taksar M., Optimal risk control for a large corporation in the presence of returns on investments, Finance Stochastics, 2001, 5: 527-547.
  • 9Slater L. J, Confluent Hypergeometric Functions, LondonL: Cambridge Universtiy Press, 1960.
  • 10Liang Z. B., Optimal investment and reinsurance for the jump-diffusion surplus process, Acta Mathematica Sinica, Chinese Series, 2008, 51(6): 1195-1204.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部