期刊文献+

对称超二次二阶哈密尔顿系统的周期解

Periodic Solutions for Symmetric Superquadratic Second Order Hamiltonian Systems
原文传递
导出
摘要 我们利用Ambrosetti-Rabinowitz对称形式的山路引理证明了给定周期T的对称超二次二阶哈密尔顿系统具有无穷多个反T/2-周期且奇的周期解. We use the symmetrical Mountain-Pass lemma of Ambrosetti-Rabinowitz to prove the existence of infinitely anti-T/2 and odd periodic solutions with a fixed period T for symmetric superquadratic second order Hamiltonian systems.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第4期827-832,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10871217)
关键词 对称二阶哈密尔顿系统 周期解 山路引理 symmetric second order Hamiltonian systems periodic solutions Mountain-Pass lemma
  • 相关文献

参考文献13

  • 1Rabinowitz P. H., Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 1978, 31: 157-184.
  • 2Rabinowitz P. H., Minimax Methods in Critical Point Thoery with Applications to Differential Equation, CBMS Reg. Conf. Ser.in Math. 65, AMS, 1986.
  • 3Long Y., Index Theory For Symplectic Paths with Applications, Birkhauser Verlag, 2002.
  • 4Mawhin J., Willem M., Critical Point Theory And Hamiltonian System, Berlin: Springer, 1989.
  • 5Struwe M., Variational Methods, Berlin: Springer, 1990.
  • 6Nirenberg L., Variational and topological methods in nonliear problems, Bull. AMS, New Series, 1981, 4: 267-302.
  • 7Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and application, J. Funct. Analysis, 1973, 14: 349-381.
  • 8Cerami G., Un criterio di esistenza per i punti critici so variete illimitate, Rend. dell academia di sc.lombardo, 1978, 112: 332-336.
  • 9Palais R., The principle of symmetric criticality, CMP, 1979, 69: 19-30.
  • 10Chang K. C., Critical point theory and applications, Shanghai: Shanghai Academic Press, 1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部