期刊文献+

线性定常系统特征模型的特征参量辨识 被引量:2

CHARACTERISTIC PARAMETERS IDENTIFICATION OF CHARACTERISTIC MODELS OF LINEAR TIME INVARIANT SYSTEMS
原文传递
导出
摘要 说明线性定常系统特征模型的特征参量是一组由高阶线性定常系统的相关信息压缩而成,于是不能简单的作为与状态无关的慢时变参数来处理.基于特征建模思想,建立了线性定常系统特征模型的特征参量与子空间方法之间的联系,给出了一种该特征模型的特征参量的合成辨识算法.同时证明了在用于子空间辨识的样本量充分大和用于状态估计的时间充分长的情况下,特征参量的估计值与真值之间的误差达到充分小.最后,对于一个六阶的单输入单输出线性定常系统的仿真例子,对投影的带遗忘因子最小二乘算法和合成辨识算法进行了比较,验证了合成辨识算法的有效性. For the linear time invariant(LTI) systems,it is shown that the characteristic parameters of characteristic model are condensed by the system information of high order LTI form,therefore some tracking algorithms,which are used to deal with the slowly time varying parameters that are unrelated with system states,are not suitable in this case.This paper establishes the connection between the characteristic parameters of characteristic model for LTI systems and subspace method,and presents a composite identification algorithm to estimate these parameters.Furthermore,it is proved that when the sample number for subspace identification is sufficiently large and the time for state estimation is sufficiently long,the error between the estimated values and the true values of characteristic parameters can be sufficiently small.A simulation example of six order single input single output(SISO) model is considered, and the proposed method is compared with the projecting forgetting factor recursive least square(FFRLS) algorithm.The simulation results show that the proposed method in the paper has more advantage than FFRLS.
出处 《系统科学与数学》 CSCD 北大核心 2010年第6期768-781,共14页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60221301,60774020) 空间智能控制技术国家重点实验室资助课题
关键词 特征模型 参数辨识 子空间方法 状态估计 带遗忘因子递推最小二乘 Characteristic model parameter identification subspace method state estimation forgetting factor recursive least square
  • 相关文献

参考文献13

  • 1Wu H X, Hu J, Xie Y C. Characteristic model-based all-coeificients adaptive control method and its applications. IEEE Transactions on Systems, Man and Cybernetics. Part C: Applications and Reviews, 2007, 37(2): 213-221.
  • 2吴宏鑫,王迎春,邢琰.基于智能特征模型的智能控制及应用[J].中国科学(E辑),2002,32(6):805-816. 被引量:23
  • 3吴宏鑫,刘一武,刘忠汉,解永春.特征建模与挠性结构的控制[J].中国科学(E辑),2001,31(2):137-149. 被引量:47
  • 4孟斌,吴宏鑫.线性定常系统特征模型的证明[J].中国科学(E辑),2007,37(10):1258-1271. 被引量:24
  • 5Ljung L. System Identification-Theory for the User. New Jersey: Prentice Hall, 1999.
  • 6Katayama T. Subspace Methods for System Identification. London: Springer-Verlag, 2005.
  • 7Van Overschee P, DeMoor B. Subspace Identification for Linear Systems-Theory, Implementation and Applications. Dordrecht: Kluwer Academic Publishers, 1996.
  • 8姜月萍,方海涛.基于主成份分析的递推子空间辨识[J].系统科学与数学,2007,27(3):387-400. 被引量:2
  • 9Viberg M. Subspace-based methods for the identification of linear time-invariant systems. Auto- matica, 1995, 31(12): 1835-1851.
  • 10Bauer D. Asympotic properties of subspace estimators. Automatica, 2005, 41(3): 359-376.

二级参考文献38

  • 1孙多青,吴宏鑫.多变量线性系统的特征模型及控制方法[J].航天控制,2004,22(6):4-10. 被引量:10
  • 2钟国民.啤酒发酵全系数自适应控制[J].自动化学报,1987,13(6):441-444.
  • 3吴宏鑫,全系数自适应控制理论及其应用,1990年
  • 4Bauer D. Asympotic properties of subspace estimators. Automatica, 2005, 41: 359-376.
  • 5Chui N and Maciejowski J M. Criteria for informative experiments with subspace identification. International Journal of Control, 2005, 78(5): 326-344.
  • 6Mercere G, Lecoeuche S and Vasseur C. Sequential correlation based propagator algorithm for recursive subspace identification. Prague, 2005 IFAC.
  • 7Qin S J, Lin W and Ljung L. A novel subspace identification approach with enforced causal models. Automatica, 2005, 41: 2043-2053.
  • 8Viberg M. Subspace-based methods for the identification of linear time-invariant systems. Automatica, 1995, 31(12): 1835-1851.
  • 9Wang J and Qin S J. A new subspace identification approach based on principal component analysis. Journal of Process Control, 2002, 12: 841-855.
  • 10Wang J and Qin S J. Closed-loop subspace identification using the parity space. Automatica, 2006, 42: 315-320.

共引文献78

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部