期刊文献+

基于盒维数原理计算蛋白质的分形维数 被引量:3

Fractal Analysis of Proteins Based on Box Dimension
原文传递
导出
摘要 蛋白质表面的粗糙性和内部结构的不规则性具有明显的分形特征.依据直观的盒维数原理对PDB库中收录的典型酶蛋白、球蛋白和膜蛋白共72种蛋白质的分形维数进行了简洁地模拟计算.数据表明:蛋白质的分形维数(Df)介于1~3之间;分形方法可定量描述蛋白质分子结构的复杂性,即Df值越大,蛋白结构越复杂;Df与残基数的不同步性证明蛋白质分子并不是简单的肽段堆积,而是存在特定的空间结构;同功能酶蛋白具有相近的Df值表明分维是区别于各种宏观参量而对蛋白质微观结构与功能进行表征的有用工具. Proteins with rough surfaces and irregular structures are characteristic of fractal nature. Fractal dimensions of a set of 72 proteins including typical enzyme, globulin and membrane protein selected from PDB database were calculated based on the principle of intuitive box dimension. The results showed that fractal dimensions of proteins were between 1 and 3, and the more complicated structure a protein has, the larger value of fractal dimension the protein is, so the fractal theory could be used to quantitatively describe the complexity of proteins structure. The discordance between fractal dimensions and the number of residues demonstrated that proteins not only were composed of peptide chains, but also had the specifically spatial structure. The close Dfvalues of the enzymes with similar function indicated that Df, differed from a variety of macro-parameters, was a useful tool for the characterization of micro-structure and function of proteins.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2010年第11期1143-1147,共5页 Acta Chimica Sinica
基金 国家自然科学基金(No.20976125) 863(No.2008AA10Z318) 教育部新世纪优秀人才(2008) 科学技术研究重点(No.108031)资助项目
关键词 分形 蛋白质 盒维数 模拟 计算 结构 fractal protein box dimension simulation calculation structure
  • 相关文献

参考文献21

  • 1Isogai, Y.; Itoh, T. J. Phys. Soc. Jpn. 1984, 53, 2162.
  • 2Wang, C.-X.; Shi, Y.-Y.; Huang, F.-H. Phys. Rev. A 1990, 41, 7043.
  • 3Daniel, M.; Baskar, S.; Latha, M. M. Phys. Scripta 1999,60,270.
  • 4Lewis, M.; Rees, D. C. Science (Wash DC) 1985, 230, 1163.
  • 5Colvin, J. T.; Stapleton, H. J. J. Chem. Phys. 1985, 82, 4699.
  • 6Wagner, G. C.; Colvin, J. T.; Allen, J. P.; Stapleton, H. J. J. Am. Chem. Soc. 1985, 107, 5589.
  • 7Hagiwara, T.; Kumagai, H.; Nakamura, K. Food Hydrocolloids 1998, 12, 29.
  • 8Takahashi, A.; Kita, R.; Shinozaki, T.; Kubota, K.; Kaibara, M. Colloid Polym. Sci. 2003, 281, 832.
  • 9Davila, E.; Pares, D. FoodHydrocolloids 2007, 21, 147.
  • 10Dubuc, B.; Quiniou, J. F.; Roques-Carmes, C.; Tricot, C.; Zucker, S. W. Phys. Rev. A 1989, 39, 1500.

共引文献5

同被引文献34

  • 1张美云,江明,陆赵情,刘国栋,宋顺喜,杨斌.分形维数对芳纶纸基材料结构和性能的表征[J].高分子材料科学与工程,2015,31(4):96-101. 被引量:9
  • 2Mandelbrot B B. Fractal:Form,Chance and Dimension[M].San Francisco:Freeman,1977.1-365.
  • 3Goldberger M A,West B J. Fractals in physiology and medicine[J].Yale Journal of Biology and Medicine,1987,(05):421-435.
  • 4BakP,Chen K. The physics of fractal[J].Physical Review D,1989,(01):5-12.
  • 5Perfect E,Kay B D. Applications of fractals in soil and tillage research:a review[J].Soil & Tillage Research,1995,(01):1-20.
  • 6Lewis M,Rees D C. Fractal surfaces of protein[J].Science,1985,(4730):1163-1165.
  • 7Peng X,Qi W,Su R X,He Z M. Describing some characters of serine proteinase using fractal analysis[J].ChaosSoliton Fract,2012,(07):1017-1023.
  • 8Agnieszka A K,Ramon G G,Pau C,Cristian O P Manuel P Jana S. Fractal dimension as a measure of surface roughness of G protein-coupled receptors:implications for structure and function[J].Journal of Molecular Modeling,2012,(09):4465-4475.
  • 9Banerji A,Ghosh I. Fractal symmetry of protein interior:what have we learned[J].Cellular and Molecular Life Sciences,2011,(16):2711-2737.
  • 10Yu Z G,Vo A,Gong Z M,Long S C. Fractals in DNA sequence analysis[J].Chin Phys B,2002,(12):1313-1318.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部