期刊文献+

检测痕量Hg^2+的DNA电化学生物传感器 被引量:17

DNA Electrochemical Biosensor for Trace Hg^(2+) Detection
下载PDF
导出
摘要 通过自组装方法将修饰有二茂铁基团的富T序列DNA分子(DNA-Fc)固定在金电极表面,得到了一种基于DNA修饰电极的电化学汞离子(Hg2+)传感器.当溶液中有Hg2+存在时,Hg2+可与修饰电极上DNA的T碱基发生较强的特异结合,形成T-Hg2+-T发卡结构,使DNA分子构象发生改变,其末端具有电化学活性的二茂铁基团远离电极表面,电化学响应随之发生变化.示差脉冲伏安法(DPV)结果显示:DNA末端二茂铁基团的还原峰在0.26V(vs饱和甘汞电极(SCE))附近,峰电流随溶液中Hg2+浓度的增加而降低;Hg2+浓度范围在0.1nmol·L-1-1μmol·L-1时,电流相对变化率与Hg2+浓度的对数呈现良好的线性关系.该修饰电极对Hg2+的检测限为0.1nmol·L-1,可作为痕量Hg2+检测的电化学生物传感器.干扰实验也表明,该传感器对Hg2+具有良好的特异性与灵敏度. In this paper we demonstrated a novel type of electrochemical Hg2+ biosensor based on a DNA-modified electrode.Ferrocenyl-modified T-rich DNA (DNA-Fc) molecules were synthesized for use as electrochemical probes.We then fixed these DNA-Fc probes onto a gold electrode surface by self-assembly.In the presence of Hg^2+, the single strand DNA on the electrode surface turned to a thymine-Hg^2+-thymine (T-Hg2+-T) hairpin structure.The ferrocenyl groups were kept away from the surface of the electrode, and this could be measured sensitively by differential pulse voltammetry (DPV).The results show a reduction peak of ferrocene at 0.26 V (vs saturated calomel electrode (SCE)) and the peak current of DPV decreased with increasing the concentration of Hg^2+.The rate of current change is linear with regards to lgcHg^2+ over a concentration range from 0.1 nmol·L^-1 to 1 μmol·L^-1 and with a detection limit of 0.1 nmol·L-1.A test for interference metal ions showed that this electrochemical biosensor based on a DNA modified electrode is highly sensitive and selective, and it can be widely used for trace Hg^2+ detection.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2010年第7期1779-1783,共5页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20573008,50821061) 国家重点基础研究项目特别基金(2006CB806102) 国家重点基础研究发展计划项目(973)(2007CB936201)资助项目~~
关键词 生物传感器 Hg2+ DNA 构象变化 示差脉冲伏安法 电化学阻抗谱 Biosensor Hg2+ DNA Conformational change Differential pulse voltammetry Electrochemical impedance spectroscopy
  • 相关文献

参考文献26

  • 1Ricci,F.; Bonham,A.J.; Mason,A.C.; Reich,N.O.; Plaxco,K.W.Anal.Chem.,2009,81:1608.
  • 2Liu,S.J.; Nie,H.G.; Jiang,J.H.; Shen,G.L.; Yu,R.Q.Anal.Chem.,2009,81:5726.
  • 3Cash,K.J.; Heeger,A.J.; Plaxco,K.W.; Xiao,Y.Anal.Chem.,2009,81:656.
  • 4Wang,J.Chem.Eur.J.,1999,5:1681.
  • 5Lubin,A.A.:Lai,R.Y.; Heegcr,A.J.; Plaxco,K.W.Anal.Chem.,2006,78:5671.
  • 6Lin,X.H.; Wu,P.; Chen,W.; Zhang,Y.F.; Xia,X.H.Talanta,2007,72:468.
  • 7Nolan,E.M.; Lippard,S.J.Chem.Rev.,2008,108:.3443.
  • 8Kalamegham,R.; Ash,K.O.Journal of Clinical Laboratory Analysis,2005,6:190.
  • 9Li,Y.F.; Chen,C.Y.; Li,B.; Sun,J.; Wang,J.X.; Gao,Y.X.; Zhao,Y.L.; Chai,Z.F.J.Anal At.Spectrom.,2006,21:94.
  • 10Bonfil,Y.; Brand,M.; Eisner,E.K.Analytica Chimica Acta,2000,424:65.

二级参考文献30

  • 1张灯,陈松月,秦利锋,李蓉,王平,Li Yanbin.检测大肠杆菌O157:H7的电化学阻抗谱生物传感器的研究[J].传感技术学报,2005,18(1):5-9. 被引量:14
  • 2Kharitonov AB,Alfonta L,Katz E,et al.Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry[J].Electroanal Chem,2000,487(2):133
  • 3Laureyn W,Nelis D,van Gerwen P,et al.Nanoscaled interdigitated titanium electrodes for impedimetric biosensing[J].Sens Actuat,2000,68:360
  • 4Peng H,Soeller C,Cannell MB,et al.Electrochemical detection of DNA hybridization amplified by nanoparticles[J].Biosens Bioelectron,2006,21(9):1727
  • 5Sun Y,Yan F,Yang W,et al.Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layerby-layer covalent attachment[J].Biomaterials,2006,27(21):4042
  • 6Randles JEB.Kinetics of rapid electrode reactions[J].Discuss Faraday Soc,1947,1:11
  • 7Ershler BV.Discuss Faraday Soc,1947,1:269
  • 8Clark LC Jr.Trans Am Soc Artif Intern Organs,1956,2:41
  • 9Turner APF.Biosensors:past,present and future[EB/OL].www.cranfield.ac.uk/biotech/chinap.htm
  • 10Su Xiaoli,Li Yanbin.A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7[J].2004,19:563

共引文献10

同被引文献280

引证文献17

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部