摘要
针对粗糙集对于连续域属性决策表的处理能力差以及不容易获得模糊集之间关系等问题,提出一种将模糊集和粗糙集结合起来的连续型条件属性模糊规则约简算法。该算法首先引入三角隶属度函数将连续属性值转换为模糊值,并使用离散模糊神经网络方法获得数据集之间关系。实例验证表明,采用该算法,用户可以根据实际决策需要和领域知识更改阈值,从而获得满意的模糊规则结果。
To solve the problems of low adaptability for continuous domain reduction and the disadvantage of failing to obtain eventual relationship among the fuzzy sets,this paper proposed a new method of attribute reduction algorithms of decision table based on combining fuzzy set with rough set.First,transformed continuous attribute value into fuzzy value with triangular membership function,then provided algorithms of hard C-means(HCM) clustering to obtain relationship among the fuzzy sets.In the end,simulation results show the effectiveness of the proposed method through an illustrative example.
出处
《计算机应用研究》
CSCD
北大核心
2010年第7期2439-2440,2444,共3页
Application Research of Computers
基金
四川省科技攻关项目(07GG006-014
2008GZ0003)
关键词
条件属性
连续型
隶属度函数
模糊规则
condition attributes
continuous
membership function
fuzzy rules