摘要
为了提高挖掘的效率和精度,采用代数定义最大频繁项集并建立其数学模型,通过二进制编码将支持度的计算、蚁群算法和遗传算法求解有机地融合,从而提出一种求解该数学模型的遗传蚁群算法。实验表明,该算法挖掘最大频繁项集是有效的,具有良好的伸缩性。
In order to improve the efficiency and accuracy of mining,adopted the algebraic definition for maximal frequent itemsets and established the mathematical model for it.The computing of support,ant colony algorithm and genetic algorithm were merged organically by the binary code.Thus,this paper proposed a genetic ant colony algorithm to solve this mathematical model.Experimental results show that the proposed algorithm for mining maximal frequent itemsets is effective and scalable.
出处
《计算机应用研究》
CSCD
北大核心
2010年第7期2505-2508,共4页
Application Research of Computers
关键词
关联规则
最大频繁项集
遗传算法
蚁群算法
association rules
maximal frequent itemsets
genetic algorithm
ant colony algorithm