期刊文献+

基于支持向量机的主动红外式结冰冰型分类方法研究 被引量:3

Active infrared method of ice type classification based on SVM
下载PDF
导出
摘要 针对飞机机翼等部位的结冰探测,提出了一种主动式红外结冰冰型分类的方法。该方法基于支持向量机,通过测量不同冰型结冰表面的红外激光反射系数,达到对结冰冰型分类的目的。初步试验结果表明,该方法能够以一定的准确性对物体结冰的冰型进行实时动态分类,为飞机结冰探测提供了一种新的技术思路。 This paper proposed an active infrared method to classify the ice types with the purpose of detecting icing on aircraft airfoils.This method was based on support vector machine technique by detecting reflection coefficients to infrared laser beam as to realize the classification of ice types.The initial experiment results show that the method is feasible in real-time classifying ice types in satisfying accuracy,which may result in a novel detection technique for aircraft icing.
出处 《计算机应用研究》 CSCD 北大核心 2010年第7期2560-2562,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60975030)
关键词 冰型分类 支持向量机 结冰冰型 红外探测 ice type classification support vector machine(SVM) ice type infrared detection
  • 相关文献

参考文献5

  • 1张杰,周磊,张洪,叶林.飞机结冰探测技术[J].仪器仪表学报,2006,27(12):1578-1586. 被引量:55
  • 2裘燮纲 韩凤华.飞机防冰系统[M].北京:航空专业教材编审组,1985..
  • 3PETRNKO V F.Physics of ice[M].Oxford:Oxford University Press,1999.
  • 4VAPNIK V N.The nature of statistical learning theory[M].NY:Springer-Verlag,1995.
  • 5李建民,张钹,林福宗.支持向量机的训练算法[J].清华大学学报(自然科学版),2003,43(1):120-124. 被引量:46

二级参考文献38

  • 1钟长生.飞机结冰神经网识别[J].中国民航飞行学院学报,2004,15(5):25-28. 被引量:1
  • 2VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3Osuna E,Freund R,Girosi F. Support Vector Machines: Training and Application [R]. CBCL Paper #144 / AI Memo #1602,Cambridge,MA: Massachusetts Institute of Technology,AI Lab,1997.
  • 4Osuna E,Freund R,Girosi F. An improved training algorithm for support vector machines [A]. Principe J,Gile L,Morgan N,et al. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing [C]. IEEE,1997. 276-285.
  • 5Joachims T. Making large-scale support vector machine learning practical [A]. Scholkopf B,Burges C,Smola A. Advances in Kernel Methods - Support Vector Learning [C]. Cambridge,MA: MIT Press,1999. 169-184.
  • 6LIN Chihjen. On the convergence of the decomposition method for support vector machines [J]. IEEE Transactions on Neural Networks,2001,12(6): 1288-1298.
  • 7Laskov P. An improved decomposition algorithm for regression support vector machines [A]. Solla S,Leen T,Muller K-R. Advances in Neural Information Processing Systems 12 [C]. Cambridge,MA: MIT Press,2000. 484-490.
  • 8Laskov P. Feasible direction decomposition algorithms for training support vector machines [J]. Machine Learning,2002,46(1/3): 315-349.
  • 9Pérez-Cruz F,Alarcón-Diana P,Navia-Vázquez A,et al. Fast training of support vector classifiers [A]. Leen T,Dietterich T,Tresp V. Advances in Neural Information Processing Systems 13 [C]. Cambridge,MA: MIT Press,2001. 734-740.
  • 10Platt J. Fast training of support vector machines using sequential minimal optimization [A]. Scholkopf B,Burges C,Smola A. Advances in Kernel Methods - Support Vector Learning [C]. Cambridge,MA: MIT Press,1999. 185-208.

共引文献144

同被引文献18

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部