期刊文献+

基于颜色和边缘特征直方图的图像型垃圾邮件分类模型 被引量:5

Image spam classification model based on color and edge histogram statistics
下载PDF
导出
摘要 提出了一种新型的图像分类识别方法,该方法不依赖于对图像内容文字信息的提取,而是直接采用图像的颜色信息和图形边缘特征来构造用于图像模式分类的统计模型。通过在公开数据集上的实验结果表明,提出的模型对图像型垃圾邮件具有良好的分类能力,分类性能优于现有相关方法。由于该方法对图像型垃圾邮件的分类准确率高,且不受图像文字识别干扰技术的影响,具有良好的应用前景。 This paper presented a novel approach for image spam classification task,which did not rely on text information contained in the images,but made use of the color and edge features that could be extracted from image files directly to construct the statistical model for pattern classification.Experimental results on real public datasets demonstrate good performance of the proposed model.Since the approach is immune to content obscuring techniques,it offers a promising alternative for practical application.
出处 《计算机应用研究》 CSCD 北大核心 2010年第7期2608-2610,2617,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2006AA01Z411) 四川省科技支撑计划资助项目(2008GZ0120)
关键词 图像识别 颜色直方图 边缘特征 图像型垃圾邮件分类 image recognition color histogram edge histogram image spam classification
  • 相关文献

参考文献10

  • 1BLANZIERI E,BRYL A.A survey of learning-based techniques of e-mail spam filtering[J].Artificial Intelligence Review,2008,29(1):63-92.
  • 2FUMERA G,PILLAI I,ROLI F.Spam filtering based on the analysis of text information embedded into images[J].Journal of Machine Learning Research,2006,7(12):2699-2720.
  • 3万明成,耿技,程红蓉,陈佳.图像型垃圾邮件过滤技术综述[J].计算机应用研究,2008,25(9):2579-2582. 被引量:6
  • 4CHAN P K,LIPPMANN R P.Machine learning for computer security[J].Journal of Machine Learning Research,2006,7(12):2669-2672.
  • 5DREDZE M,GEVARYAHU R,ELIAS-BACHRACH A.Learning fast classifiers for image spam[C] //Proc of the 4th Conference on E-mail and Anti-Spam.2007:487-493.
  • 6WAN Ming-cheng,ZHANG Feng-li,CHENG Hong-rong,et al.Text localization in spam image using edge features[C] //Proc of International Conference on Communications,Circuits and Systems.2008:838-842.
  • 7张引,潘云鹤.复杂背景下文本提取的彩色边缘检测算子设计[J].软件学报,2001,12(8):1129-1135. 被引量:20
  • 8BYUN B,LEE C H,WEBB S,et al.An anti-spam filter combination framework for text-and-image emails through incremental learning[C] //Proc of the 6th Conference on E-mail and Anti-Spam.2009.
  • 9WANG Zhe,JOSEPHSON W,LV Qin,et al.Filtering image spam with near-duplicate detection[C] //Proc of the 4th Conference on E-mail and Anti-Spam.2007.
  • 10ARADHYE H B,MYERS G K,HERSON J A.Image analysis for efficient categorization of image-based spam e-mail[C] //Proc of the 8th International Conference on Document Analysis and Recognition.Washington DC:IEEE Computer Society,2005:914-918.

二级参考文献41

  • 1李茹,李弼程.基于D-S证据理论的邮件筛选方法[J].计算机工程与设计,2005,26(10):2833-2836. 被引量:3
  • 2孟章荣.各种颜色模型选用需求分析[J].中国图象图形学报(A辑),1996,1(3):238-241. 被引量:20
  • 3张秋余,张博,迟宁.自然语言语义理解在反垃圾邮件中的应用[J].计算机应用,2006,26(6):1315-1317. 被引量:5
  • 4许洋洋,袁华.一种基于内容的广告垃圾图像过滤方法[J].山东大学学报(理学版),2006,41(3):73-78. 被引量:9
  • 5庄越挺.智能多媒体信息分析与检索的研究:博士学位论文[M].杭州:浙江大学,1998..
  • 6中国互联网协会反垃圾邮件中心.2007年第三次中国反垃圾邮件状况调查报告[EB/OL].http://www.anti-spare.cn.
  • 7KIM H J,SHRESTHA J, KIM H N, et al. User action based adaptive learning with weighted Bayesian classification for filtering spare mail [ C]//Prnc of Advances in Artificial Intelligence. [ S. l. ] :Springer- Verlag, 2006 : 790-798.
  • 8YANG Zhen,NIE Xiang-fei,XU Wci-ran,et al. An approach to spam detection by naive Bayes ensemble based on decision induction[ C ]// Proc of the 6th International Conference on Intelligent Systems Design and Applications. 2006:861-866.
  • 9ANAYAT S, ALI A, AHMAD H F. Using a probable weight based Bayesian approach for spare filtering[ C ]//Proc of the 8th International Multitopic Conference. 2004:340-345.
  • 10SASAKI M,SHINNOU H. Spare detection using text clustering[ C ]// Proc of International Conference on Cyberworlds. 2005.

共引文献24

同被引文献48

  • 1冯兵,李芝棠,花广路.基于灰度—梯度共生矩阵的图像型垃圾邮件识别方法[J].通信学报,2013,34(S2):1-4. 被引量:11
  • 2赵晓翠,王来生.基于投影寻踪和支持向量机的模式识别方法[J].计算机应用研究,2007,24(2):86-88. 被引量:10
  • 3练秋生,刘春亮.基于Gabor滤波器和LBP的分级掌纹识别[J].计算机工程与应用,2007,43(6):212-215. 被引量:13
  • 4MessageLabs Intelligence 2010年9月网络安全报告[ EB/OL ]. (2010-09) [ 2010- 10- O1 ]. http ://www. messagelabs, corn/down-load. get? filename = MLI_2010 09_September FINAL_EN. PDF.
  • 5Image spam blog[EB/OL]. (2010-08-16) [2010-09-15]. http:// www. symantec, com/connect/blogs/ image- spare.
  • 6FUMERA G, PILLA1 I, ROLl F. Spare filtering based on the analysis of text information embedded into images [ J ]. Journal of Machine Learning Research, 2006, 7: 2699-2720.
  • 7DREDZE M, GEVARYAHU R, EL1AS-BACHRACH A. Learning fast classifiers fur image spare [ C ]//Proc of the 4th Conference on Email and AntiSpare. Mountain View, CA: [s. n. ], 2007:487-493.
  • 8KEOGH E, LONARDI S, RATANAMAHATANA C A. Towards parameter-free data mining[C ]//Proc of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2004:260-215.
  • 9CHI Z, KONG Jun. Image content classification using a block Kolmogorov complexity measure[ C ] // Proc of the 4th International Conference on Signal Processing. Beijing: IEEE Communications Society,1998:1185-1188.
  • 10KOLMOGOROV A N, SOLOMONOFF R, CHAITIN G. Three approaches to the quantitative definition of information [ J ]. Problems of Information Transmission, 1965,1 (1) :1-7.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部