期刊文献+

二维拟定常可压流Euler方程组的简单波 被引量:2

Simple Waves for Two-Dimensional Pseudo-Steady Compressible Euler System
下载PDF
导出
摘要 简单波是这样的流动,它在像空间中的像是一条曲线."简单波理论是除基本流动结构以外构造流动问题的解的基础",见Courant和Friedrichs的经典著作《超声速流与冲击波》.该文主要研究二维拟定常可压流Euler方程组的简单波的几何结构.根据这些几何诠释,还构造了绕一拟流线弯曲部的疏散和压缩的简单波流动结构.这种流动结构将作为一个局部流动结构出现在4个接触间断的Riemann问题的整体解中. A simple wave was defined as a flow in a region whose image is a curve in phase space.It is well known that "the theory of simple waves is fundamental in building up the solutions of flow problems out of elementary flow patterns".Geometric construction of simple waves for the 2D pseudo-steady compressible Euler system were mainly concerned with.Based on the geometric interpretation the expansion or compression simple wave flow construction around a pseudo-stream line with a bend part was constructed.It is a building block which appears in the global solution to four contact discontinuities Riemann problems.
作者 赖耕 盛万成
出处 《应用数学和力学》 CSCD 北大核心 2010年第7期791-800,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10971130) 上海市教委重点学科基金资助项目(J50101)
关键词 自相似Euler方程组 拟流线 广义特征分析 简单波 声速圆 声速边界 self-similar Euler system pseudo-stream line generalized characteristic analysis simple wave sonic circle sonic edge
  • 相关文献

参考文献15

  • 1Li J, Zhang T, Yang S. The Two-Dimensional Riemann Problem in Gas Dynamics [M]. London: Addison Wesley Longman Limited, 1998.
  • 2Zhang T, Zheng Y. Conjecture on the structure of solution of the Riemann problem for two- dimensional gas dynamics system[J]. SIAMJ. Math Anal, 1990, 21(3): 593-630.
  • 3Zheng Y. Systems of Conservation Laws: Two-Dimensional Riemann Problems [ M ]. Boston: 38 PNLDE, Bikhauser, 2001.
  • 4John F. Partial Differential Equations[M]. New York: Springer-Verlag, 1982.
  • 5Courant R, Friedrichs K O. Supersonic Flow and Shock Waves [ M ]. New York: Interscience,1948.
  • 6Li J, Zhang T, Zheng Y. Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations[J]. Commu Math Phys, 2005, 267( 1 ) : 1-12.
  • 7Bang S. Rarefaction Wave Interaction of Pressure Gradient System [M]. State college: Pennsylvania State University, 2007.
  • 8Dal Z, Zhang T. Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics [ J ]. Arch Ration Mech Anal, 2000,155 (4) : 277-298.
  • 9Lei Z, Zheng Y. A complete global solution to the pressure gradient equation [ J ]. J Differential Equations, 2007, 236 ( 1 ) : 280-292.
  • 10Song K, Zheng Y. Semi-Hyperbolic patches of solutions of the pressure gradient system [ J ]. Discrete and Continuous Dynamic System, 2009, 24(4) : 1355-1380.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部