期刊文献+

非定常线性化Navier-Stokes方程的非协调流线扩散有限元法分析 被引量:4

Streamline Diffusion Nonconforming Finite Element Method for the Time-Dependent Linearized Navier-Stokes Equations
下载PDF
导出
摘要 对非定常线性化Navier-Stokes方程提出了非协调流线扩散有限元方法.用向后Euler格式离散时间,用流线扩散法处理扩散项带来的非稳定性.速度采用不连续的分片线性逼近,压力采用分片常数逼近.得到了离散解的存在唯一性以及在一定范数意义下离散解的稳定性和误差估计. A finite difference streamline diffusion nonconforming finite element approximation was proposed for solving the time-dependent linearized Navier-Stokes equations.Streamline diffusion finite element method was used to discretize the space variables in order to cope with the usual instabilities caused by the convection term and finite difference discretization was used in the time domain.Nonconforming finite element approximations were used for the velocity and pressure fields:the velocity is approximated by discontinuous piecewise linear and the pressure by piecewise constant.Stability and optimal error estimates for the discrete solutions are obtained.
出处 《应用数学和力学》 CSCD 北大核心 2010年第7期822-834,共13页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10771150) 国家重点基础研究发展规划资助项目(2005CB321701) 教育部新世纪优秀人才基金资助项目(NCET-07-0584) 四川省教育厅青年基金资助项目(07ZB087)
关键词 流线扩散法 非协调 非定常线性化Navier-Stokes方程 误差估计 streamline diffusion method nonconforming time-dependent linearized Navier-Stokes error estimate
  • 相关文献

参考文献16

  • 1Hughes T J R, Brooks A N. A multi-dimensional up-wind scheme with no crosswind diffusion [ C ]//Hughes T J R. Finite Element Methods for Convection Dominated Flows. ASME Monograph AMD-34, 1979:19-35.
  • 2Navert U. A fmite element for convection-diffusion problems [ D ]. PhD thesis. Goteborg: Chalmers University of Technology, 1982.
  • 3Johnson C. Finite element methods for convection-diffusion problems [C]//Glowinski R, Lions J L. Computing Methods in Engineering and Applied Sciences V. Amsterdam: North- Holland, 1981, 311-323.
  • 4Johnson C, Navert U. An analysis of some finite element methods for advection-diffusion [C]//Axelsson O, Frank L S, Van der Sluis A. Analytical and Numerical Approaches to Asymptotic Problems in Analysis. Amsterdam: North-Holland, 1981:99-118.
  • 5Johnson C, Navert U, Pitkaranta J. Finite element methods for linear hyperbolic problems [J]. Computer Methods in Applied Mechanics and Engineering, 1984, 45( 1/3 ) :285-312.
  • 6Johnson C, Saranen J. Streamline diffusion methods for the-incompressible Euler and Navier- Stokes equations [J]. Mathematics of Computation, 1985, 47 ( 175 ) : 1-18.
  • 7Tobiska L, Verftirth R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations [ J ]. SIAM Journal on Numerical Analysis, 1996, 33 ( 1 ) : 107-127.
  • 8Zhou G H. How accurate is the streamline diffusion fmite element method [ J ]. Journal of Computational Mathematics, 1997, 66(217) :31-44.
  • 9孙澈,沈慧.THE FINITE DIFFERENCE STREAMLINE DIFFUSION METHODS FOR TIME-DEPENDENT CONVECTION-DIFFUSION EQUATIONS[J].Numerical Mathematics A Journal of Chinese Universities(English Series),1998,7(1):72-85. 被引量:6
  • 10张强.不可压N-S方程的差分流线扩散法[J].计算数学,2003,25(3):311-320. 被引量:7

二级参考文献6

共引文献37

同被引文献31

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部