期刊文献+

基于供需均衡的保险精算与期权定价相关性 被引量:4

Correlation Between Actuarial Approach and Option Pricing Based on Supply-Demand Equilibrium
下载PDF
导出
摘要 在综述期权定价与保险精算相关研究的基础上,运用供需均衡原理取代金融市场的无套利均衡原理,推导出纯保费精算定价公式;进而利用保险精算方法,在损失分布服从对数正态分布假设下,在连续时间状态下推导出经典的Black-Scholes期权定价模型;最后将保险精算与期权定价统一于一般经济学研究框架,通过规范的经济分析证明本文得到的纯保费精算定价就是帕累托最优纯保费,也就是买入看涨期权的价格.从理论上扫清了期权定价模型在保险领域的应用障碍,为保险精算与期权定价的融合和统一奠定了理论基础. Based on a review of the studies on the correlation between option pricing and actuarial approach, the law of supply-demand equilibrium is applied to the deduction of actuarial pricing equation of pure premium instead of the no-arbitrage equilibrium theory about financial market. Then, assuming that the loss complies with the logarithmic normal distribution, the classic Black- Scholes option pricing model in the continuous-time state is deduced in actuarial way. As a result, the actuarial approach and option pricing are unified into the general economic research framework which proves economically that the actuarial pricing of pure premium we gave is just Pareto optimal pure premium, i.e. , the price of call option. In this way we can get rid of the hindrance to the applications of option pricing model to the insurance field, thus laying theoretical foundation on which the integration and unification of actuarial approach with option pricing are available.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第7期1046-1049,共4页 Journal of Northeastern University(Natural Science)
基金 教育部人文社会科学研究基金资助项目(09YJCZH012) 辽宁省社会科学基金重点资助项目(L07ASH001) 中央高校基本科研业务费资助项目(90406012)
关键词 供需均衡原理 保险精算 期权定价 BLACK-SCHOLES模型 supply-demand equilibrium principle actuarial approach option pricing Blaek- Scholes model
  • 相关文献

参考文献10

  • 1孙祁祥,孙立明.保险经济学研究述评[J].经济研究,2002,37(5):48-57. 被引量:43
  • 2Doherty N, Garven J R. Price regulation in property-liability insurance: a contingent claims approach[J]. The Journal of Finance, 1986,41(5) :1031 - 1050.
  • 3Cummins J D. Risk based premiums for insurance guaranty funds[J]. The Journal of Finance, 1988,43(4):823-839.
  • 4Brennan M J, Schwartz E. The pricing of equity linked life insurance policies with an asset value guarantee[J]. Journal of Financial Economics, 1976,3(3) :195-213.
  • 5Gerber H U, Shiu E S W. Actuarial bridges to dynamic hedging and option pricing [J]. Insurance : Mathematics arid Economics, 1996,18(3) : 183 - 218.
  • 6Bladt M, Rydberg T H. An actuarial approach to option pricing under the physical measure and without market assumptions[J]. Insurance: Mathematics and Economics, 1998,22( 1 ) :65 - 73.
  • 7Schmitz N. Note on option pricing by actuarial considerations [J]. Insurance: Mathematics and Economics, 2005, 36 (3):517-518.
  • 8郑红,郭亚军,李勇,刘芳华.保险精算方法在期权定价模型中的应用[J].东北大学学报(自然科学版),2008,29(3):429-432. 被引量:25
  • 9Gollier C, Schlesinger H. Arrow' s theorem on the optimality of deductibles: a stochastic dominance approach [J]. Economic Theory, 1996,7(2) :359 - 363.
  • 10Garven J R, Louberge H. Reinsurance, taxes and efficiency: a contingent claim model of insurance market equilibrium[J]. Journal of Financial Intermediation, 1996 (5) : 74 - 93.

二级参考文献48

  • 1Mayers D and C.W.Smith, 1988,"Ownership Sructure Across Lines of Property-casualty Insurance," Journal of Law and Economics ,63,19-40.
  • 2Mookerjee, D. and Png, I., 1989, "Optimal Auditing, Insurance and Redistribution," Quarterly Journal of Economics, 104,205-228.
  • 3Meier, Kenneth J., 1988, The Political Economy of Regulation : The Case of Insurance, Albany, NY : State University of New York Press.
  • 4Mossin,J., 1968, "Aspects of Rational Insurance Purchasing, "Journal of Political Economy ,79,553-568.
  • 5Neumann,J.Von and O. Morgenstem, 1947, Theory of Games and Economic Behavior. Princeton University Press.
  • 6Pratt,J., 1964,"Risk Aversion in the Small and in the Large", Econometrica,32,122-136.
  • 7Rothchild, M. and J. E. Stiglitz, 1976," Equilibrium in Competitive Insurance Markets:The Economics of Markets With Imperfect Information,"Quarterly Journal of Economics ,90,629-650.
  • 8Rubinstein, A and M. E. Yaari, 1983," Repeated Insurance Contracts and Moral Hazard," Journal of Economic Theory, 30,74-97.
  • 9Shavell, S., 1986," The Judgement Proof Problem ,"International Review of Law and Economics,6,45-58.
  • 10Spence, M. and R. Zeckhauser , 1971 ," Insurance, Information and Individual Action ," American Economic Review,61,380-387.

共引文献66

同被引文献24

  • 1Yon Neumann J, Morgenstern O. Theory of games and economic behavior[M]. Princeton University Press, 1947.
  • 2Arrow K J. Le role des Valeurs Boursieres Pour La Repartition La MeiUeurs Des Risques [Z]. Econo- metrie, CNRS, Paris, 1953 : 41 ~ 47.
  • 3Debreu G. Theory of value[M]. John Wiley, 1959.
  • 4Borch K. Equilibrium in a reinsurance market[J]. Econometrica, 1962,30: 424~ 444.
  • 5Arrow K J. Uncertainty and the welfare economics of medical care [J]. American Economic Review, 1963,53:941~973.
  • 6Merton R. On the cost if deposit insurance whenthere are surveillance costs[J]. Journal of Business, 1978,51 :439~452.
  • 7Doherty N, Garven J. Price regulation in property liability insurance: A contingent claims approach [J]. Journal of Finance,1986,41 :1031~1050.
  • 8Cummins D. Risk-based premiums for insurance guaranty funds[J]. Journal of Finance, 1988,43: 823~839.
  • 9Shimko D C. The Valuation of multiple claim insurance contracts [J]. Journal of Financial and Quantitative Analysis, 1992,27 : 229~246.
  • 10Mogens B, et al. An actuarial approach to option pricing under the physical measure and withoutmarket assumptions [J]. Insurance : Mathematics and Economics, 1998,22 (1) : 65~ 73.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部