期刊文献+

乘性Markov跳变系统鲁棒方差控制

Robust variance-constrained H_∞ control for Markov jump system with multiplicative noise
原文传递
导出
摘要 针对一类具有乘性噪声和参数不确定性的Markov跳变参数系统,研究使得闭环系统的稳态状态方差小于某个给定的上界,同时满足一定H∞性能的状态反馈鲁棒方差控制器设计问题.运用线性矩阵不等式(LMI)方法,对系统进行了方差分析,给出并证明了控制器存在的条件,进而用一组线性矩阵不等式的可行解给出了控制器的一个参数化表示.最后的仿真结果验证了该方法的有效性. For Markov jump linear system with multiplicative noise and uncertainties,the design problem of state feedback robust variance controller is researched which guarantees the closed-loop steady-state variance to be less than a given upper bound and some H∞ performances are concerned. Based on linear matrix inequality (LMI) method,system variance is analyzed and conditions for the existence of such controllers are proposed and proved. A parameterized representation of a set of desired controllers is characterized in terms of the feasible solutions to the LMI system. Finally,the simulation results show the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2010年第7期1010-1014,共5页 Control and Decision
基金 国家自然科学基金项目(60874040) 国家863计划项目(2007AA701405)
关键词 方差受限 H∞性能 乘性噪声 MARKOV跳变系统 线性矩阵不等式 Variance constraint H∞ performance Multiplicative noise Markov jump system Linear matrix inequality
  • 相关文献

参考文献10

  • 1Mariton M.Jump linear systems in automatic control[M]. New York: Marcel Decker, 1990.
  • 2Costa O L V, Fragoso M D, Marques R P. Discrete time Markov jump linear systems[M]. London: Springer- Verlag, 2005.
  • 3Boukas E K. Static output feedback control for stochastic hybrid systems: LMI approach[J]. Automatica, 2006, 42(1): 183-188.
  • 4Xu S Y, Chen T W. Robust H∞ control for uncertain discrete-time stochastic bilinear systems with Markovian switching[J]. Int J of Robust control, 2005, 15(5): 201-217.
  • 5Peng Shi, E1 Kebir Boukas, Sing Kiong Nguang, et al. Robust disturbance attenuation for discrete-time active fault tolerant control systems with uncertainties[I]. Optimal Control Application and Method, 2003, 24(2): 85-101.
  • 6Chung H Y, Chang W J. Covariance control with variance constraints for continuous perturbed stochastic systems[J]. Systems and Control Letters, 1992, 19(5): 413-417.
  • 7Lu J, Skelton R E. Robust variance control for systems with finitesignal-to-noise uncertainty[J]. Automatica, 2000, 36(4): 511-525.
  • 8Wang Z D, Daniel W C Ho, Liu X H. Variance-constrained control for uncertain stochastic systems with missing measurements[J]. IEEE Trans on Systems, Man, and Cybernetics-PART A : Systems and Humans, 2005, 35(5): 746-753.
  • 9Wang Z D, Yang F W, Daniel W C Ho, et al. Robust variance-constrained Hoo control for stochastic systems with multiplicative noises[J]. J of Mathematical Analysis and Applications, 2007, 328(1): 487-502.
  • 10Wang Z D, Daniel W C Ho. Output feedback robust control with D-stability and variance constraints: Parametrization approach[J]. J of Dynamical and Control Systems, 2005, 11(2): 263-280.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部