期刊文献+

基于边界鉴别分析的递归维数约简算法

Recursive dimension reduction algorithm based on margin discriminant analysis
原文传递
导出
摘要 提出一种基于边界鉴别分析的递归维数约简算法.该算法把已求取边界鉴别向量正交于待求超平面法向量作为支持向量机(SVM)优化问题新的约束条件;然后对改进SVM进行递归求解,得到正交边界鉴别向量基;最后将数据样本在正交边界鉴别向量上投影实现维数约简.该算法不仅克服了现有维数约简算法难以支持小样本数据集、受数据样本分布影响等问题,而且抽取的特征向量具有更优的分类性能.仿真实验说明了算法的有效性. A recursive dimension reduction algorithm based on marginal discriminant analysis is presented. A constraint condition that the obtained margin discriminant vectors are orthogonal to the new normal vector of classification hyperplane is added to the optimal problem of support vector machines (SVM),and margin discriminant vectors can be recursively achieved by solving the modified SVM. The number of dimension of data can be reduced by projecting data in orthogonal margin discriminant basis. The algorithm can not only overcome some drawbacks of the most existing algorithms,such as unable to work effectively in small size sample case,easily affected by distribution of data etc,but also has better classification performance. The simulation results show the effectiveness of the proposed algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2010年第7期1088-1092,1097,共6页 Control and Decision
基金 徐州师范大学预研基金项目(08XLY10) 中国博士后科学基金项目(20060390277) 江苏省"六大人才高峰"基金项目(06-E-05)
关键词 支持向量机 分类 维数约简 边界鉴别分析 Support vector machines Classification Dimensionality reduction Margin discriminant analysis
  • 相关文献

参考文献12

  • 1Masashi Sugiyama. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis[J]. J of Machachine Learning Research, 2007, 8: 1027-1061.
  • 2Stefanos Z, Anastasios T, Ioannis E Minimum class variance support vector machines[J]. IEEE Trans on Image Processing, 2007, 16(10): 2551-2563.
  • 3Skrobot V L, Castro E V R. Use of principal component analysis(PCA) and linear discriminant analysis(LDA) in gas chromatographic(GC) data in the investigation of gasoline adulteration[J]. Energy & Fuels, 2007, 21(6): 3394-3400.
  • 4杨键.线性投影分析的理论与算法及其在特征抽取中的应用[D].南京:南京理工大学,2002:58-69.
  • 5Jin Z, Yang J Y, Tang Z M, ed al. A theorem on the uncorrelated optimal discriminant vectors[J]. Pattern Recognition, 2001, 34(10): 2041-2047.
  • 6Xiang C, Fan X A, Lee T H. Face recognition using recursive fisher linear discriminant[J]. IEEE Traas on Image Process, 2006, 15(8): 2097-2105.
  • 7Ye, Xiong T. Computational and theoretical analysis of null space and orthogonal linear discriminant analysis[J]. J of Maehachine Learning Research, 2006, 7:1183-1204.
  • 8Tao Q, Wu G, Wang J. The theoretical analysis of FDA and applications[J]. Pattern Recognition, 2006, 39(6): 1199- 1204.
  • 9Vapnik V. Statistical learning theory[M]. MA: Addison- Wiley, 1998: 25-60.
  • 10Gerda Claeskens, Christophe Croux, Johan Van Kerckhoven. An information criterion for variable selection in support vector machines[J]. J of Machachine Learning Research, 2008, (9): 541-558.

二级参考文献28

  • 1杨国亮,王志良,王国江.面部表情识别研究进展[J].自动化技术与应用,2006,25(4):1-6. 被引量:10
  • 2Malinowski E R. Factor analysis in chemistry[M]. New York:Wiley-Inter-Science, 1991.328-334.
  • 3Dunia R, Qin S J. A unified geometric approach to process and sensor fault identification[J]. Comput Chem, 1998,22(7-8):927-943.
  • 4Dunia R, Qin S J, Edgar T F, et al. Identification of fault sensor using principal component analysis[J]. AICHE, 1996,42(10):2797-2812.
  • 5Brauner N, Shacham M. Considering precision of data in reduction of dimensionality and PCA[J]. Comput Chem, 2000,24(10):2603-2614.
  • 6Nomikos P, MacGregor J F. Monitoring batch process using multi-way principle component analysis[J]. AICHE, 1994,40(8):1361-1369.
  • 7Kourti T, Lee J, MacGregor J F. Analysis, monitoring and fault diagnosis of batch process using multi-block and multi-way PLS[J]. J of Process Control, 1995,5(4):277-283.
  • 8Gao X, Wang G, Li Y,et al. Multivariate statistical process monitoring based on synchronization of trajectories using DTW[A]. 4th IFAC Workshop on On-line Fault Detection and Supervision in the Chemical Process Industries(CHEMAS-4)[C]. Jejudo island: The
  • 9Wold S. Cross validatory estimation of the number of component in factor and principal component analysis[J]. Technometrics, 1978,20(3):397-406.
  • 10Dahl K S, Piovoso M J, Kosanovich K A. Translating third-order data analysis methods to chemical batch processes[J]. Chemom Intell Lab Syst, 1999,46(2):161-180.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部