摘要
提出一种基于边界鉴别分析的递归维数约简算法.该算法把已求取边界鉴别向量正交于待求超平面法向量作为支持向量机(SVM)优化问题新的约束条件;然后对改进SVM进行递归求解,得到正交边界鉴别向量基;最后将数据样本在正交边界鉴别向量上投影实现维数约简.该算法不仅克服了现有维数约简算法难以支持小样本数据集、受数据样本分布影响等问题,而且抽取的特征向量具有更优的分类性能.仿真实验说明了算法的有效性.
A recursive dimension reduction algorithm based on marginal discriminant analysis is presented. A constraint condition that the obtained margin discriminant vectors are orthogonal to the new normal vector of classification hyperplane is added to the optimal problem of support vector machines (SVM),and margin discriminant vectors can be recursively achieved by solving the modified SVM. The number of dimension of data can be reduced by projecting data in orthogonal margin discriminant basis. The algorithm can not only overcome some drawbacks of the most existing algorithms,such as unable to work effectively in small size sample case,easily affected by distribution of data etc,but also has better classification performance. The simulation results show the effectiveness of the proposed algorithm.
出处
《控制与决策》
EI
CSCD
北大核心
2010年第7期1088-1092,1097,共6页
Control and Decision
基金
徐州师范大学预研基金项目(08XLY10)
中国博士后科学基金项目(20060390277)
江苏省"六大人才高峰"基金项目(06-E-05)
关键词
支持向量机
分类
维数约简
边界鉴别分析
Support vector machines
Classification
Dimensionality reduction
Margin discriminant analysis